
Lindsey Gray
 
IRIS-HEP Training Event, Princeton
20 June 2024

Introduction to Dask and Dask-awkward



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Dask

• Dask provides an interface for specifying/locating input data and then 
describing manipulations on that data are organized into a task graph
- This task graph can then be executed on local compute or on a cluster
• Dask Array and Dask Dataframe deal well with rectangular data
- Provide a scalable interface to describe manipulations of data that may not fit into 

system memory by mapping transformations onto partitions of the data that fit in memory

2



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

So what does that set of words really mean?

• You use collections to write straightforward python
• That code generates an abstract, declarative, description of your analysis
- It can then be executed by anything that implements the collection’s array interface!
- This makes analysis code extremely portable for tradeoff in underlying complexity
• I hope to dig into this complexity enough so you can reason about task 

graphs
3



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Major dask “verbs"

• compute “dask.compute(stuff); stuff.compute()”
- This runs optimization routines (by default) and then executes the graph using a 

specified scheduler or “get” function
- It blocks until the computation is complete and continues local execution once the 

request computation job is done
- All results only exist “client side”, i.e. nothing is cached
• persist “dask.persist(stuff); stuff.persist()”
- Like compute but non-blocking, immediately returning a new dask collection
- Terminal nodes in the task graph (i.e. final results) are cached and the dask collection 

points to these cached results
- A further compute call is required to fetch the cached results!
• visualize “dask.visualize(stuff); stuff.visualize()”
- Display information about the steps that will be executed to compute your requested 

results
- Does not cause any actual computation to happen
- Useful for understanding how efficient an operation might be when executed in parallel

4



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

“High Level” vs “Low Level” Graphs

• Dask achieves parallelism by operating over “partitions” or “chunks” of data
• All dask collections will have a “.dask” property that contains the “high-level 

graph”
- The high-level graph represents the operations to be done over the whole input dataset
- The low level graph represent what happens to each input partition and each data 

access
- Embarrassingly parallel tasks will have a low level graph that are clones over partitions!

5

Low-level graph
High-level graph



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Keys in a task graph

• Task-graphs are “just” big dictionaries where the keys of the dictionary 
correspond to each output that’s made by your computation
• It is possible (but not often required) to request the computation of any 

individual key
- This is occasionally useful for debugging but it’s easier to just evaluate your computation 

earlier when you’re writing it
• These keys are referenced by other keys in the dictionary, defining the graph

6



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Basic types of task graphs

• HEP analysis workflows have typically been embarrassingly parallel or map-
reduce
- Skimming (without merging) is embarrassingly parallel
- Histogramming is fundamentally a map-reduce operation
- Usually we put anything that’s more complex either in a big enough set of operations 

until it fits those patterns again
• Consider masks applied to many variables, systematics, corrections
- None of these are actually embarrassingly parallel or map-reduce!
- By using a dask-collection to write down all your operations new kinds of parallelism can 

be exploited to possibly* accelerate analysis further

7



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

A simple example of exposing different parallelism

8



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Another example of parallelism with many input partitions

9



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Dask is extremely literal!

10



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Task Graph Optimization

11

cull

inline
inline_functions

fuse



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Dask is extremely literal … and it has consequences

12



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Benchmarking with parallelism is important!

13



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Getting to:

• Up to now, have looked at what’s available in the base dask collections
- Particularly array, since it’s more pertinent to what we’re after in the end
• dask-awkward doesn’t really operate alone to get HEP analyses
- There’s also dask-histogram, which provides distributed histogram filling as well
- These two packages together let allow you to write parallelizable, portable analyses
• You get all features of dask while writing rather familiar code
- Task graph optimization comes for free
- Dask-awkward also has instrumentation to optimize automatically what data is read from 

an input file
- We’ll get into these parts more in the notebook

14



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Practicalities: Writing Code (1)

• Minimal boiler plate to enter delayed, out-of-core computing environment
• Nanoevents interface is the same as with awkward1
- Arrays from flat input file are organized into physics object concepts
- Only major difference is now when you want something computed you .compute() it
• cf. dask.persist() - no time in this talk, it is a whole can of worms, see extras / chat over coffee!

• Largely user needs to change “ak.action” to “dak.action”

15

dask_histogram + hist

local dask-distributed cluster (can omit, or extend to condor)

https://www.youtube.com/watch?v=McKSS_WjLwU


20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Practicalities: Writing Code (2)

• Example: Query 8
- from ADL Benchmarks

• Finds dilepton pairs close to z-
pole and a third lepton
- Calculates and plots the transverse 

mass of the system

• Aside from the .compute() 
statement this code is identical 
to the eager awkward-array 
code you would use to write 
this!

16

https://github.com/CoffeaTeam/coffea-benchmarks/blob/coffea2023/coffea-adl-benchmarks.ipynb


20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Optimization Example: Q8

17

query  
beginning

query  
end

• Raw HEP analysis task graphs get large quickly
- Reasonably complete analysis, full systematics, is ~7000 layers as written by the user
- Q8 (top) here is 78 layers
- Each task-graph node could be executed on a different cluster resource (data transfer!)
• Dask provides standard optimizers to minimize node multiplicity
- This minimizes data transfer overhead and task-spawning overhead
- These optimizations are applied by default, yielding 2 layers for Q8
- Reasonably complete analysis is 234 layers post-optimization (ops fuse to hist filling)

query  
beginning

query  
end

dask.optimize(q8_hist)



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Data-access optimization

18



20 June 2024 L. Gray | Intro. to Dask and Dask-Awkward

Concluding remarks before practical tutorial
• Introduced the dask parallel processing library
- Walked through how it decomposes processing tasks into steps in a taskgraph
- Dug into some of the details of what these task graphs are and how they work

• Demonstrated the kinds of parallelism that dask makes available
- Depending on how heavy pieces of data are, it is possible to tune the kind of parallelism 

that’s possible in the graph
- Demonstrated that some times doing more work can be more efficient because there 

are fewer synchronization points and correspondingly simpler optimized task graphs

• Introduced dask-awkward and demonstrated that it is very similar to raw 
awkward array in terms of user-facing behavior
- Also benefits immediately from dask infrastructure to optimize and inspect task graphs
- Come with the capability to automatically optimize what data is read from files
- Demonstrated some analysis-like code and interfacing to histogramming via desk-

histogram

• Let’s dig into this a bit more via the notebook for this session!
19


