Introduction to Dask and Dask-awkward

Lindsey Gray

IRIS-HEP Training Event, Princeton
20 June 2024

Dask

Collections
(create task graphs)

\square Futures

Task Graph

Schedulers

(execute task graphs)

Single-machine (threads, processes, synchronous)

Distributed

- Dask provides an interface for specifying/locating input data and then describing manipulations on that data are organized into a task graph
- This task graph can then be executed on local compute or on a cluster
- Dask Array and Dask Dataframe deal well with rectangular data
- Provide a scalable interface to describe manipulations of data that may not fit into system memory by mapping transformations onto partitions of the data that fit in memory

So what does that set of words really mean?

Collections
(create task graphs)

Dask Delayed
\square

Task Graph

Schedulers

(execute task graphs)

Single-machine (threads, processes, synchronous)

Distributed

- You use collections to write straightforward python
- That code generates an abstract, declarative, description of your analysis
- It can then be executed by anything that implements the collection's array interface!
- This makes analysis code extremely portable for tradeoff in underlying complexity
- I hope to dig into this complexity enough so you can reason about task graphs

Major dask "verbs"

- compute "dask.compute(stuff); stuff.compute()"
- This runs optimization routines (by default) and then executes the graph using a specified scheduler or "get" function
- It blocks until the computation is complete and continues local execution once the request computation job is done
- All results only exist "client side", i.e. nothing is cached
- persist "dask.persist(stuff); stuff.persist()"
- Like compute but non-blocking, immediately returning a new dask collection
- Terminal nodes in the task graph (i.e. final results) are cached and the dask collection points to these cached results
- A further compute call is required to fetch the cached results!
- visualize "dask.visualize(stuff); stuff.visualize()"
- Display information about the steps that will be executed to compute your requested results
- Does not cause any actual computation to happen
- Useful for understanding how efficient an operation might be when executed in parallel

"High Level" vs "Low Level" Graphs

Low-level graph
import dask.array as da
$x=$ da. random. normal(size $=10000$, $\operatorname{chunks}=(5000)$, $y=$ da.random.normal(size=10000, chunks=(5000,))
$z=$ da. random.normal(size=10000, chunks=(5000,))

```
pos_x = x > 0
```

w = y[pos_x] + z[pos_x]
w.visualize(optimize_graph=True)

High-level graph

- Dask achieves parallelism by operating over "partitions" or "chunks" of data
- All dask collections will have a ".dask" property that contains the "high-level graph"
- The high-level graph represents the operations to be done over the whole input dataset
- The low level graph represent what happens to each input partition and each data access
- Embarrassingly parallel tasks will have a low level graph that are clones over partitions!

Keys in a task graph

```
import dask.array as da
x = da.random.normal(size=10000, chunks=(5000,))
y = da.random.normal(size=10000, chunks=(5000,))
z = da.random.normal(size=10000, chunks=(5000,))
pos_x = x > 0
w = y[pos_x] + z[pos_x]
```

w.dask.keys()
dict_keys([('add-409561e07200a6cbfd926597eaf2bdf4', 0), ('add-409561e07200a6cbfd926597eaf2bdf4', 1), ('getitem-54d9c1cbce7524f2d4a981a058e 3a3bf', 0), ('getitem-54d9c1cbce7524f2d4a981a058e3a3bf', 1), ('normal-e98c0b79a1c58e194000dac8df15129e', 0), ('normal-e98c0b79a1c58e194000 dac8df15129e', 1), ('normal-1d35c102a977253c1e109e8580fef013', 0), ('normal-1d35c102a977253c1e109e8580fef013', 1), ('gt-935757e86f5e2010ef 8bd61571fa6c3b', 0), ('gt-935757e86f5e2010ef8bd61571fa6c3b', 1), ('getitem-57d3eebe608615a77585593ceee6ff51', 0), ('getitem-57d3eebe608615 a77585593ceee6ff51', 1), ('getitem-b935203cdb1228959978b901a2d8eec6', 0), ('getitem-b935203cdb1228959978b901a2d8eec6', 1), ('normal-ce21fd 91ed7be1b8be52cb4904a980f8', 0), ('normal-ce21fd91ed7be1b8be52cb4904a980f8', 1), ('getitem-7d684acfe70ecc40e89609d0e70c10cf', 0), ('getite m-7d684acfe70ecc40e89609d0e70c10cf', 1)])

- Task-graphs are "just" big dictionaries where the keys of the dictionary correspond to each output that's made by your computation
- It is possible (but not often required) to request the computation of any individual key
- This is occasionally useful for debugging but it's easier to just evaluate your computation earlier when you're writing it
- These keys are referenced by other keys in the dictionary, defining the graph

Basic types of task graphs

Embarrassingly Parallel

Hadoop/Spark/Dask/Airflow/Prefect

MapReduce

Hadoop/Spark/Dask

Full Task Scheduling
Dask/Airflow/Prefect

- HEP analysis workflows have typically been embarrassingly parallel or mapreduce
- Skimming (without merging) is embarrassingly parallel
- Histogramming is fundamentally a map-reduce operation
- Usually we put anything that's more complex either in a big enough set of operations until it fits those patterns again
- Consider masks applied to many variables, systematics, corrections
- None of these are actually embarrassingly parallel or map-reduce!
- By using a dask-collection to write down all your operations new kinds of parallelism can be exploited to possibly* accelerate analysis further

A simple example of exposing different parallelism

```
import dask.array as da
x = da.random.normal(size=10_000)
y = da.random.normal(size=10_000)
z = da.random.normal(size=10_000)
pos_x = x > 0
w = y[pos_x] + z[pos_x]
w.visualize(optimize_graph=False)
```


w.dask

HighLevelGraph with 9 layers.
<dask.highlevelgraph.HighLevelGraph object at 0x13fc960c0>
0. normal-35b89e4de842487c90ae705f1e9c0a31

1. normal-590b4df63b34e8b7f89728583149b39d
2. gt-5dea99c548758ddcf43d02d730a7a81a
3. getitem-23bd65b746d4f1b0cce6d012003f8347
4. getitem-f6903ae5194738ea7b40640cdb3f3b6d
5. normal-1add28117c35b6ff91cf2c17d78356a1
6. getitem-fdbc6d3c375f625b8bd5e26d4ad9ccd7
7. getitem-efb2a9517e7f915e44bf2105a8b144cc
8. add-2d1f4be532b8b0485da5dbcd3118ddec

Another example of parallelism with many input partitions

```
import dask.array as da
x = da.ones((15, 15), chunks=(5, 5))
y = x + x.T
# y.compute()
# visualize the low level Dask graph
y.visualize(filename='transpose.svg')
```

```
print(y.dask)
```

HighLevelGraph with 3 layers.
<dask.highlevelgraph.HighLevelGraph object at 0x13fc96c60>
0. ones_like-53cb6f513b7c8c066b24bbb83dc2e948

1. transpose-aa363d234a9decb5e59827d781c595f1
2. add-c191726e3feac0c48ae79a20eb4bb1ac

Dask is extremely literal!

```
import dask.array as da
x = da.random.normal(size=10_000)
y = da.random.normal(size=10_000)
z = da.random.normal(size=10_000)
pos_x = x > 0
w = y[pos_x] + z[pos_x]
w.visualize(optimize_graph=False)
```


import dask.array as da

$x=$ da.random.normal(size=10_000)
y = da.random.normal(size=10_000)
z = da.random.normal(size=10_000)
$\mathrm{w}=\mathrm{y}[\mathrm{x}>0]+\mathrm{z}[\mathrm{x}>0]$
w.visualize(optimize_graph=False)

Task Graph Optimization

inline_functions
fuse

Dask is extremely literal ... and it has consequences

```
import dask.array as da
x = da.random.normal(size=10000)
y = da.random.normal(size=10000)
z = da.random.normal(size=10000)
pos_x = x > 0
w = y[pos_x] + z[pos_x]
w.visualize(optimize_graph=True)
```


Benchmarking with parallelism is important!

```
import dask.array as da
x = da.random.normal(size=100_000_000, chunks=(5_000_000,))
y = da.random.normal(size=100_000_000, chunks=(5_000_000,))
z = da.random.normal(size=100_000_000, chunks=(5_000_000,))
pos_x = x > 0
w = y[pos_x] + z[pos_x]
%timeit w.compute(scheduler="sync")
6.09 s \pm 163 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
import dask.array as da
x = da.random.normal(size=100_000_000, chunks=(5_000_000,))
y = da.random.normal(size=100_000_000, chunks=(5_000_000,))
z = da.random.normal(size=100_000_000, chunks=(5_000_000,))
w = y[x > 0] + z[x > 0]
%timeit w.compute(scheduler="sync")
6.13 s }\pm92.1 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each
import dask.array as da
x = da.random.normal(size=100_000_000, chunks=(5_000_000,))
y = da.random.normal(size=100_000_000, chunks=(5_000_000,))
z = da.random.normal(size=100_000_000, chunks=(5_000_000,))
w = x + y + z
w = w[x > 0]
%timeit w.compute(scheduler="sync")
5.55 s }\pm18.1 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each
```

```
import dask.array as da
x = da.random.normal(size=100_000_000, chunks=(5_000_000,))
y = da.random.normal(size=100_000_000, chunks=(5_000_000,))
z = da.random.normal(size=100_000_000, chunks=(5_000_000,))
pos_x = x > 0
w = y[pos_x] + z[pos_x]
%timeit w.compute(scheduler="threads")
```

$1.07 \mathrm{~s} \pm 206 \mathrm{~ms}$ per loop (mean \pm std. dev. of 7 runs, 1 loop each)
import dask.array as da
x = da.random.normal(size=100_000_000, chunks=(5_000_000,))
$y=d a . r a n d o m . n o r m a l\left(s i z e=100 _000 _000, ~ c h u n k s=\left(5 _000 _000,\right)\right)$
z = da.random.normal(size=100_000_000, chunks=(5_000_000,))
$w=y[x>0]+z[x>0]$
\%timeit w. compute(scheduler="threads")
876 ms ± 29 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
import dask.array as da
x = da.random.normal(size=100_000_000, chunks=(5_000_000,))
$\mathrm{y}=\mathrm{da}$. random. normal(size=100_000_000, chunks=(5_000_000,))
z = da.random.normal(size=100_000_000, chunks=(5_000_000,))
$w=x+y+z$
$w=w[x>0]$
\%timeit w. compute(scheduler="threads")
827 ms $\pm 26.5 \mathrm{~ms}$ per loop (mean \pm std. dev. of 7 runs, 1 loop each)

Getting to：『叩 dask－awkward

－Up to now，have looked at what＇s available in the base dask collections
－Particularly array，since it＇s more pertinent to what we＇re after in the end
－dask－awkward doesn＇t really operate alone to get HEP analyses
－There＇s also dask－histogram，which provides distributed histogram filling as well
－These two packages together let allow you to write parallelizable，portable analyses
－You get all features of dask while writing rather familiar code
－Task graph optimization comes for free
－Dask－awkward also has instrumentation to optimize automatically what data is read from an input file
－We＇ll get into these parts more in the notebook

Practicalities: Writing Code (1)

- Minimal boiler plate to enter delayed, out-of-core computing environment
- Nanoevents interface is the same as with awkward1
- Arrays from flat input file are organized into physics object concepts
- Only major difference is now when you want something computed you .compute() it - cf. dask.persist() - no time in this talk, it is a whole can of worms, see extras / chat over coffee!
- Largely user needs to change "ak. action" to "dak.action"

```
import dask
import dask_awkward as dak
import hist
import hist.dask as hda
import numpy as np
    dask_histogram + hist
from coffea import processor
from coffea.nanoevents import NanoEventsFactory
import matplotlib.pyplot as plt
from distributed import Client
client=Client() local dask-distributed cluster (can omit, or extend to condor)
# The opendata files are non-standard NanoAOD, so some optional data columns are missing
processor.NanoAODSchema.warn_missing_crossrefs = False
events = NanoEventsFactory.from_root(
    "file:/Users/lgray/coffea-dev/coffea/Run2012B_SingleMu.root",
    treepath="Events",
    chunks_per_file=500,
    permit_dask=True,
    metadata={"dataset": "SingleMu"}
).events()
```


Practicalities: Writing Code (2)

- Example: Query 8
- from ADL Benchmarks
- Finds dilepton pairs close to zpole and a third lepton
- Calculates and plots the transverse mass of the system
- Aside from the .compute() statement this code is identical to the eager awkward-array code you would use to write this!

```
events["Electron", "pdgId"] = -11 * events.Electron.charge
events["Muon", "pdgId"] = -13 * events.Muon.charge
events["leptons"] = dak.concatenate(
    [events.Electron, events.Muon],
    axis=1,
)
events = events[dak.num(events.leptons) >= 3]
pair = dak.argcombinations(events.leptons, 2, fields=["l1", "l2"])
pair = pair[(events.leptons[pair.l1].pdgId == -events.leptons[pair.l2].pdgId)]
x = events.leptons[pair.l1] + events.leptons[pair.l2]
pair = pair[
    dak.singletons(
        dak.argmin(
            abs(
                        (events.leptons[pair.l1] + events.leptons[pair.l2]).mass
                            - 91.2
            ),
            axis=1,
        )
    )
]
events = events[dak.num(pair) > 0]
pair = pair[dak.num(pair) > 0][:, 0]
l3 = dak.local_index(events.leptons)
l3 = l3[(l3 != pair.l1) & (l3 != pair.l2)]
l3 = l3[dak.argmax(events.leptons[l3].pt, axis=1, keepdims=True)]
l3 = events.leptons[l3][:, 0]
mt = np.sqrt(2 * l3.pt * events.MET.pt * (1 - np.cos(events.MET.delta_phi(l3))))
q8_hist = (
    hda.Hist.new. Reg(
        100, 0, 200, name="mt", label="$\ell$-MET transverse mass [GeV]"
    )
    .Double()
    .fill(mt)
)
q8_hist.compute().plot1d()
```


Optimization Example: Q8

- Raw HEP analysis task graphs get large quickly
- Reasonably complete analysis, full systematics, is ~7000 layers as written by the user
- Q8 (top) here is 78 layers
- Each task-graph node could be executed on a different cluster resource (data transfer!)
- Dask provides standard optimizers to minimize node multiplicity
- This minimizes data transfer overhead and task-spawning overhead
- These optimizations are applied by default, yielding 2 layers for Q8
- Reasonably complete analysis is 234 layers post-optimization (ops fuse to hist filling)

Data-access optimization

q8_hist.compute().plot1d(flow="none")
dak. .necessary_columns(q8_hist)
\{'from-uproot-d895a5d3a21bc4fd7e5f7c35639408ec': frozenset(\{'Electron_charge',
'Electron_eta',
'Electron_mass',
'Electron_phi',
'Electron_pt',
'MET_phi',
'MET_pt',
'Muon_charge',
'Muon_eta',
'Muon_mass',
'Muon_phi',
'Muon_pt',
'nElectron',
'nMuon'\}) \}

Concluding remarks before practical tutorial

- Introduced the dask parallel processing library
- Walked through how it decomposes processing tasks into steps in a taskgraph
- Dug into some of the details of what these task graphs are and how they work
- Demonstrated the kinds of parallelism that dask makes available
- Depending on how heavy pieces of data are, it is possible to tune the kind of parallelism that's possible in the graph
- Demonstrated that some times doing more work can be more efficient because there are fewer synchronization points and correspondingly simpler optimized task graphs
- Introduced dask-awkward and demonstrated that it is very similar to raw awkward array in terms of user-facing behavior
- Also benefits immediately from dask infrastructure to optimize and inspect task graphs
- Come with the capability to automatically optimize what data is read from files
- Demonstrated some analysis-like code and interfacing to histogramming via deskhistogram
- Let's dig into this a bit more via the notebook for this session!

