Fermilab DU.S. DEPARTMENT OF Science

Image credit: Marguerite Tonjes

Statistics speed-run

Nick Smith Higgs Combine Tutorial 3 Feb 2023

Goal

To give you plausible familiarity with sentences like:

"An observed (expected) upper limit is placed on the signal strength μ , using the profile likelihood ratio test statistic, following the CL_s criterion, under asymptotic assumptions, and found to be ..."

Plan:

- Probability, likelihood, and inference
 - Bayesian inference
 - Maximum likelihood point estimation
- Frequentist hypothesis tests
 - Neyman interval
 - Likelihood ratio test statistic
 - Under-fluctuation and CLs
 - Asymptotic behavior
- Adding uncertainties
 - Statistical model with auxiliary measurements
 - Profiling and marginalizing nuisance parameters

Probability, likelihood, and inference

Probability

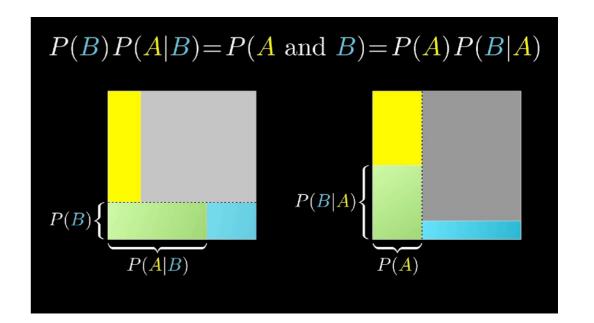
- Kolmogorov axioms: for a sample space S, we have
 - $\forall A \subset S \quad P(A) \ge 0$
 - $\forall A, B \subset S, A \cap B = \emptyset \quad P(A \cup B) = P(A) + P(B)$
 - -P(S) = 1
- Conditional probability

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

- Think: probability of A given fixed B
- Bayes' theorem

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

- More exposition:
 - PDG review
 - <u>3blue1brown</u> on YouTube

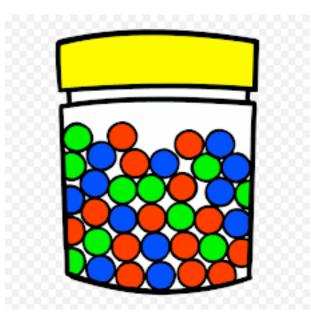


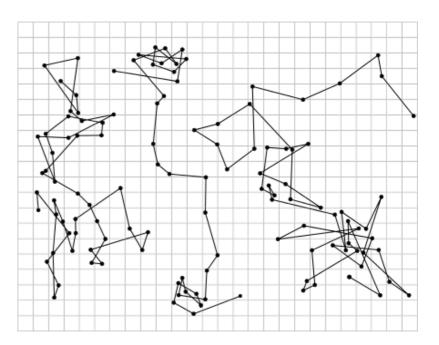
Probability density / mass

- Probability mass function (pmf)
 - probability of observing a specific outcome
- Probability density function (pdf), e.g. P(x)
 - P(x) dx = differential probability of observing an outcome
- In both cases:
 - defined over a space of outcomes/observables/samples
 - imply a cumulative (cdf), percentile (inverse cdf), etc. in 1D
 - may be parameterized

Examples

- Marbles: P(draw 2 red, 2 green, 1 blue from jar)
 pmf <u>Multivariate hypergeometric distribution</u>
- Brownian motion: P(displacement after some time)
 - pdf Normal distribution
- Counts in a particle detector after some time
 - pmf Poisson distribution





Distributions of interest

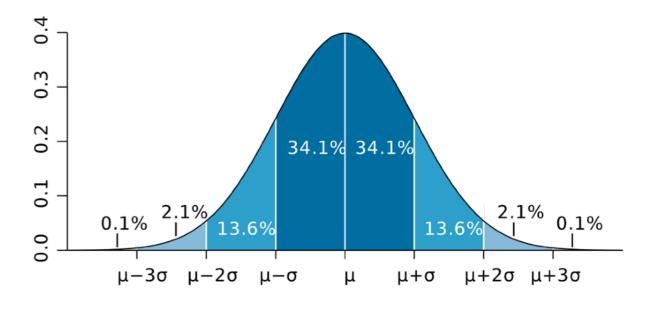
Poisson distribution

$$P(n \mid \lambda) = \frac{\lambda^n e^{-\lambda}}{n!}$$

Normal distribution

$$P(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Central limit theorem:
 - sums of independent random-distributed variables tend towards a Normal-distributed variable
- Standard (Z) score:
 - Convention for interesting percentiles: " 1σ " = 0.6827..., " 2σ " = 0.9545..., " 5σ " = 5.7e-7
 - These are 2-sided. Can also define 1-sided (half)
 - Often quote 95 %-ile
- Log-normal distribution
 - Definition: Normal in log-space (change of variables: $y = \ln(x), dy = x^{-1}dx$)
 - Corollary to central limit theorem:
 - products of [...] tend towards a Log-normal distributed variable
 - Common model for calibration uncertainties (more later)



Poisson process

- In CMS, collision events occur at a rate $\lambda(x, t) = L(t) \sigma_{pp \to X}(x) \epsilon(x, t)$
 - Where (for now ignoring the model parameters)
 - L(t) is the instantaneous luminosity
 - $\sigma_{pp \to X}$ is some cross section (differential w.r.t. observables *x*)
 - ϵ is our detector acceptance/efficiency (hopefully mild t-dependence!)

Poisson process

- In CMS, collision events occur at a rate $\lambda(x, t) = L(t) \sigma_{pp \to X}(x) \epsilon(x, t)$
 - Where (for now ignoring the model parameters)
 - L(t) is the instantaneous luminosity
 - $\sigma_{pp \to X}$ is some cross section (differential w.r.t. observables *x*)
 - ϵ is our detector acceptance/efficiency (hopefully mild t-dependence!)
- Integrate over some region B ("a bin") to get a Poisson PMF
 - in time and "observable space" (e.g. muon 4-momentum, etc.)

$$\Lambda_i = \int_{B_i} \lambda(x, t) dx dt, \qquad P(N_i | \Lambda_i) = \frac{\Lambda_i^{N_i} e^{-\Lambda_i}}{N_i!}$$

Poisson process

- In CMS, collision events occur at a rate $\lambda(x, t) = L(t) \sigma_{pp \to X}(x) \epsilon(x, t)$
 - Where (for now ignoring the model parameters)
 - L(t) is the instantaneous luminosity
 - $\sigma_{pp \to X}$ is some cross section (differential w.r.t. observables *x*)
 - ϵ is our detector acceptance/efficiency (hopefully mild t-dependence!)
- Integrate over some region B ("a bin") to get a Poisson PMF
 - in time and "observable space" (e.g. muon 4-momentum, etc.)

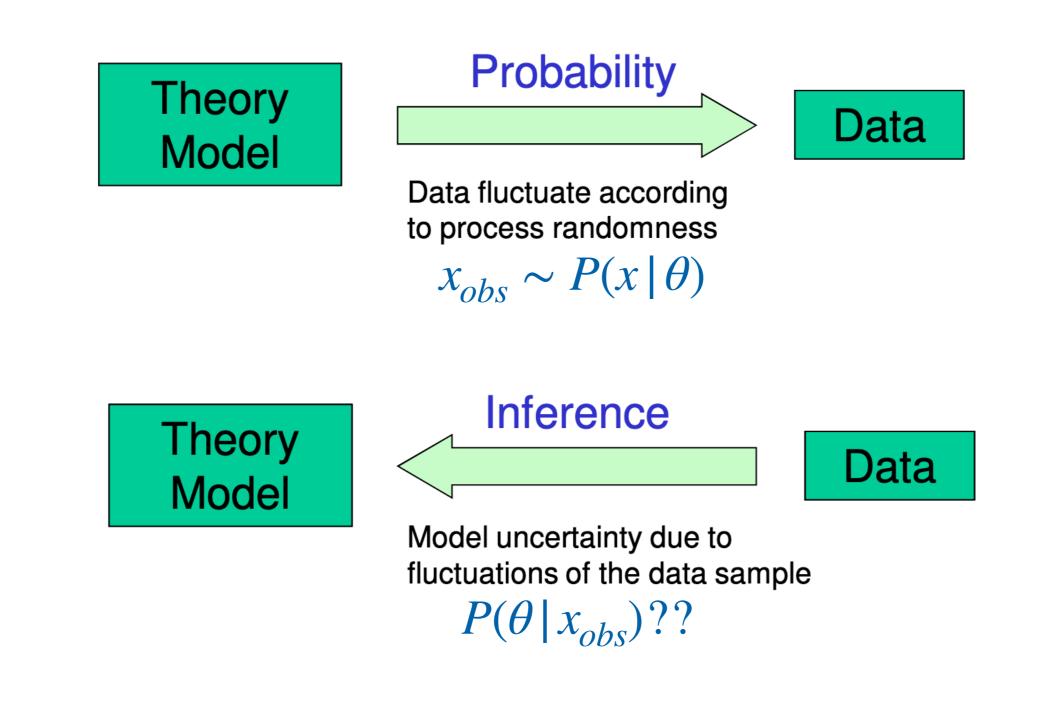
$$\Lambda_{i} = \int_{B_{i}} \lambda(x, t) dx dt, \qquad P(N_{i} | \Lambda_{i}) = \frac{\Lambda_{i}^{N_{i}} e^{-\Lambda_{i}}}{N_{i}!}$$

- This is a <u>Poisson Process</u>
 - Binned model: overall PDF is a joint distribution (product) over disjoint regions . $P(\text{data} \mid \text{model}) = \prod P(N_i \mid \Lambda_i)$
 - Un-binned model: conditional on N, λ can be interpreted as a PDF (integrating t)

$$P(\text{data} | \text{model}) = P(N | \Lambda) \prod_{i}^{N} \lambda(x_i) dx_i$$

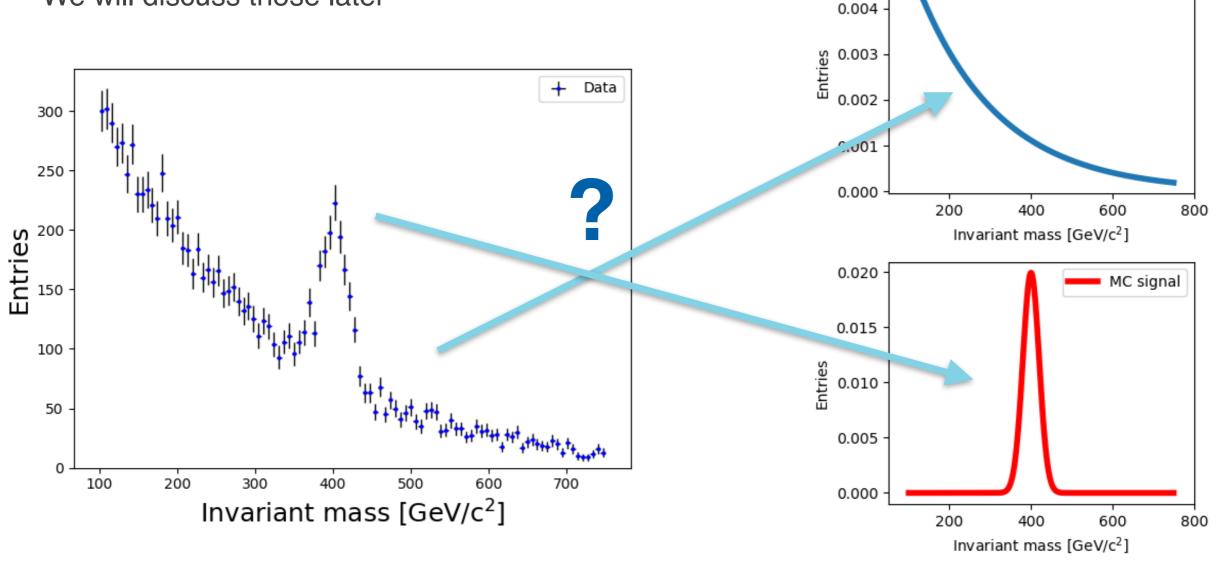
(actually just the limit as bin size goes to zero: <u>R. Barlow, "Extended maximum likelihood"</u>)

Inference



Inference example

- Given this data and a model for signal and background, I might infer:
 - The amount of signal present (a parameter of interest, or POI)
 - The functional form of the background, if a-priori unknown
 - Parameterized by *nuisance parameters*
 - We will discuss those later

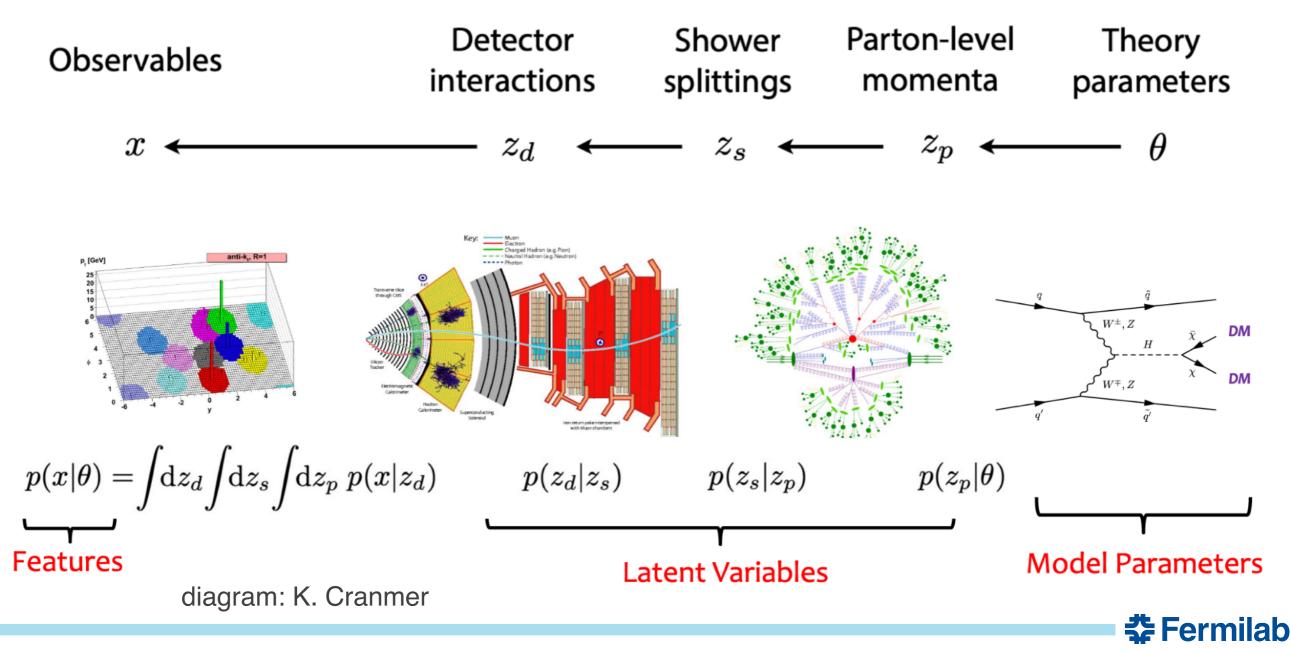


0.005

MC background

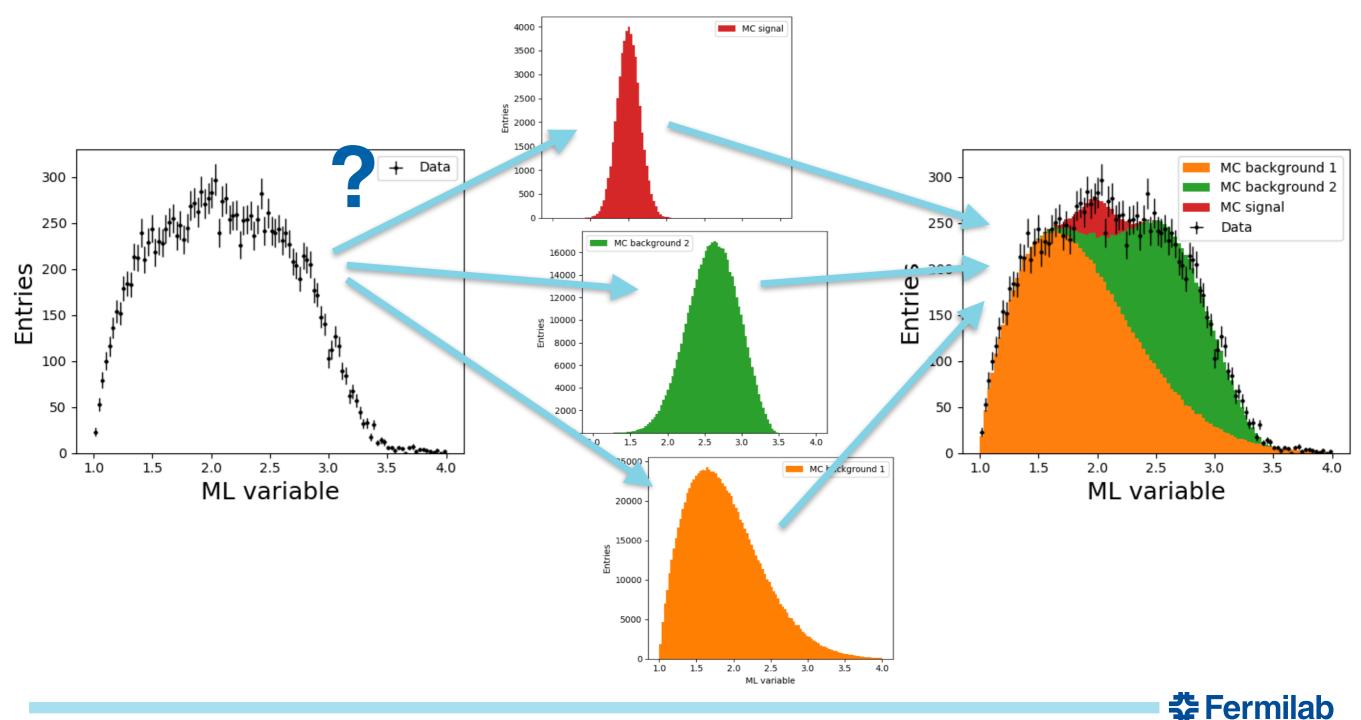
Inference for full simulation

- The whole picture is more complex
 - We often cannot compute $P(x \mid \theta)$, but we can efficiently sample it
 - → surrogate model using Monte Carlo (MC) estimates of bin yields



Templates

- We often build models via template histograms derived from MC
 - Typically to infer signal strength μ = normalization of signal template



Bayesian inference

• We would like to infer $P(\theta \mid x_{obs})$

- i.e. given our observation x, what is the probability distribution of model parameter θ ?

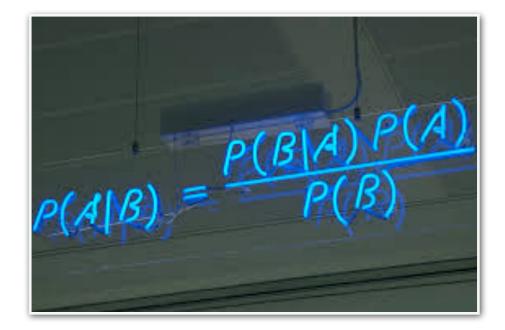
• Bayes' theorem tells us:

 $P(\theta | x_{obs}) = \frac{P(x_{obs} | \theta)P(\theta)}{P(x_{obs})}$

- Ok, we have our model $P(x \mid \theta)$, but what about the other terms?
- $P(\theta)$ is the prior probability distribution for θ
 - Bayesian: we provide this based on our prior belief
 - Or some recipe (objective Bayes, etc.)
 - Frequentist: no such thing!
- $P(x_{obs})$ is the evidence

_ Here a normalization: $P(x_{obs}) = \int P(x_{obs} | \theta) P(\theta) d\theta$

- In practice, can be hard to compute!
- Better use found in **Bayes' factor** to compare models

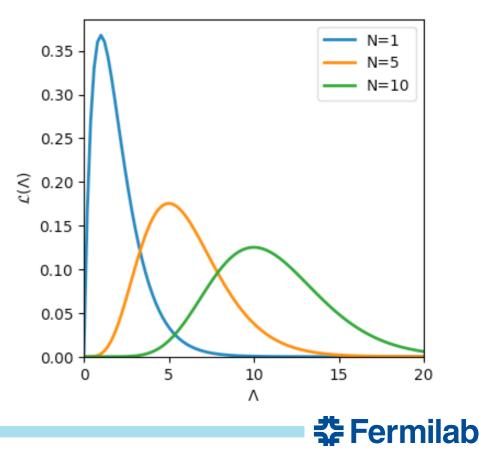


Maximum likelihood point estimate

- For a fixed *observation*, can define likelihood $\mathscr{L}(\theta) = P(x_{obs} | \theta)$
 - This is a function of θ , but **not** a probability density
 - More exposition in PDG 40.2
- $\hat{\theta}$ that maximizes this function is the *maximum likelihood estimate* (MLE)

$$\hat{\theta} = \arg \max_{\theta} [\mathscr{L}(\theta)] = \arg \min_{\theta} [-\ln \mathscr{L}(\theta)]$$

- This is a random variable
- We usually minimize the negative log-likelihood (NLL) numerically
 - the core job of MINUIT's MIGRAD routine

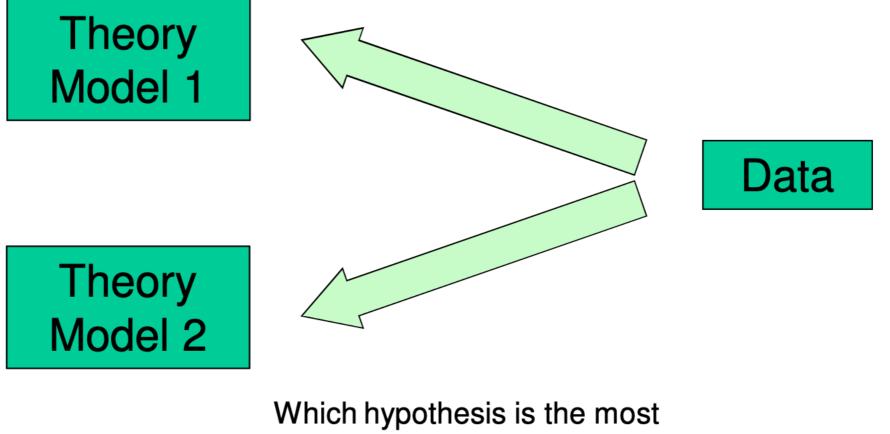


Maximum likelihood trivia

- Absolute value of $\mathscr{L}(\hat{\theta})$ is usually not meaningful
 - Can be calibrated by taking a ratio (chi-square, saturated binned model)
- The MLE has good limiting properties as sample size $\rightarrow \infty$
 - Consistent: sequence of MLEs converges to true value
 - Efficient: variance of MLE saturates the Cramér-Rao lower bound
 - Distribution of MLE approaches Normal distribution
 - Asymptotically unbiased
 - Bias can exist for finite samples, can be corrected (with increase in variance)
- The likelihood (and it's maximum) is invariant under change of variables
 - Again, it is not a PDF!
- Ok, but this is just a *point*. Can frequentists say more without a prior?

Frequentist hypothesis tests

Hypothesis tests



consistent with the experimental data?

Hypothesis tests

- Simple test parameterized by two probabilities: α, β
 - β with respect to an alternate hypothesis

Table of error types		Null hypothesis (<i>H</i> ₀) is	
		TRUE	FALSE
Decision about null hypothesis (<i>H</i> ₀)	Don't reject	Correct inference (true negative) (probability = 1-α)	Type II error (false negative) (probability = β)
	Reject	Type I error (false positive) (probability = α)	Correct inference (true positive) (probability = 1−β)

Confidence sets

- One can ask, "assuming a value of θ , would x_{obs} be a likely outcome?"
 - This is a hypothesis test (likely or not)

Confidence sets

- One can ask, "assuming a value of θ, would x_{obs} be a likely outcome?"
 This is a hypothesis test (likely or not)
- We have $P(x|\theta)$, so we can answer this if we:
 - Choose a significance level α of the test (e.g. 0.05)
 - Define a test statistic (ordering) of possible outcomes
 - Run pseudo-experiments (toys) for each θ to determine distribution of test statistic
 - Perform experiment, report set of θ where test statistic is below the 1- α quantile

Confidence sets

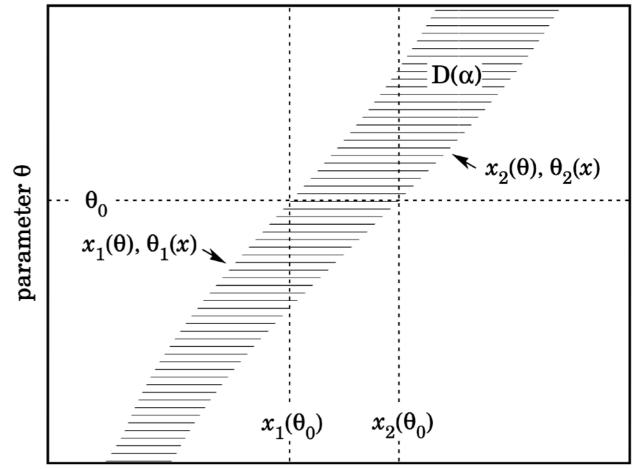
- One can ask, "assuming a value of θ, would x_{obs} be a likely outcome?"
 This is a hypothesis test (likely or not)
- We have $P(x|\theta)$, so we can answer this if we:
 - Choose a significance level α of the test (e.g. 0.05)
 - Define a test statistic (ordering) of possible outcomes
 - Run pseudo-experiments (toys) for each θ to determine distribution of test statistic
 - Perform experiment, report set of θ where test statistic is below the 1- α quantile
- A good ordering will lead to
 - Good *coverage*: in repeated experiments the (unknown) θ_{true} will be in the set with probability at least 1- α , though it may over-cover
 - High *power* (1- β): the set does not contain θ_{alt} for some specified alternative hypothesis

Neyman interval

- Neyman construction (PDG, 40.4.2):
 - For each θ , find range $[x_1, x_2]$ s.t.

$$P(x_1 < x < x_2) = \int_{x_1}^{x_2} P(x \mid \theta) \, dx \ge 1 - \alpha$$

- Perform experiment
- Report confidence interval: $[\theta_1, \theta_2]$ where $x_{obs} \in [x_1(\theta), x_2(\theta)]$ for all $\theta \in [\theta_1, \theta_2]$



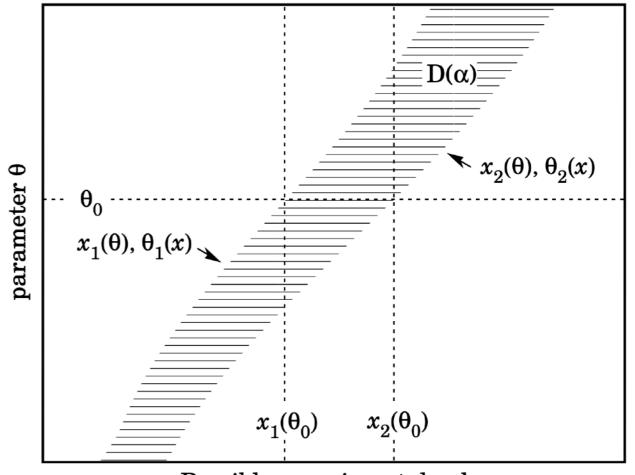
Possible experimental values x

Neyman interval

- Neyman construction (PDG, 40.4.2):
 - For each θ , find range $[x_1,x_2]$ s.t.

$$P(x_1 < x < x_2) = \int_{x_1}^{x_2} P(x \mid \theta) \, dx \ge 1 - \alpha$$

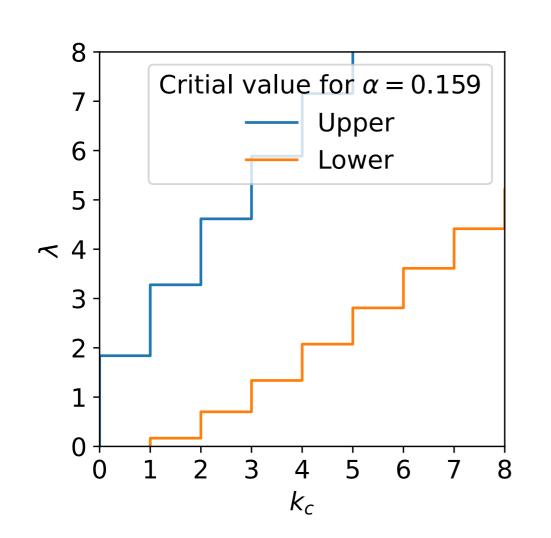
- Perform experiment
- Report confidence interval: $[\theta_1, \theta_2]$ where $x_{obs} \in [x_1(\theta), x_2(\theta)]$ for all $\theta \in [\theta_1, \theta_2]$
- Interval has coverage $1-\alpha$.
 - For an ensemble of experiments, the interval $[\theta_1, \theta_2]$ will contain (unknown) θ_{true} with probability 1- α . This is a statement about the distribution of θ_1 and θ_2 , NOT θ_{true} .

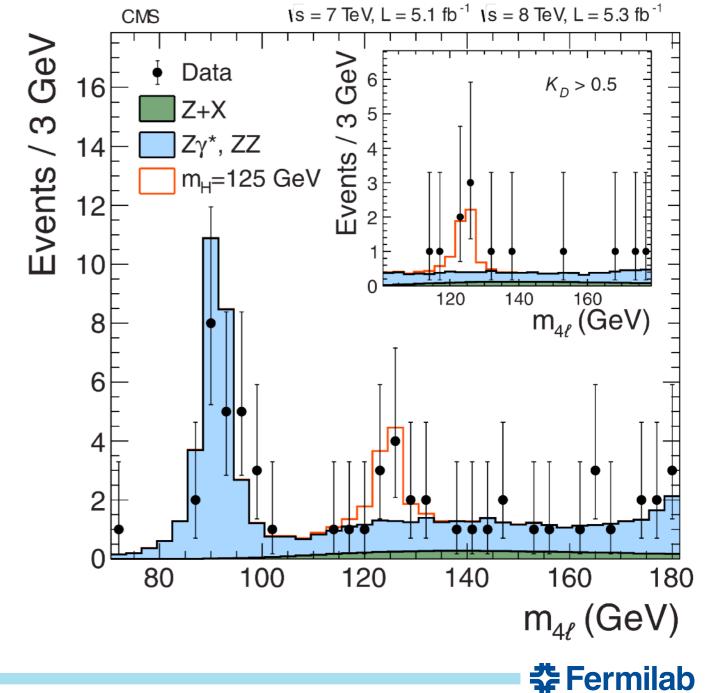


Possible experimental values x

Neyman interval

- You have all seen these: error bars on data points are the Neyman intervals for a Poisson distribution
 With *α* = 0.159...
 - Also referred to as Garwood intervals





Likelihood ratio test

1. Define
$$t_{\theta}(x) = -2 \ln \frac{\mathscr{L}(\theta)}{\mathscr{L}(\hat{\theta})}$$

ſ

2. Compute associated pdf (change of variables)

$$P(t_{\theta} \mid \theta') = \int \delta(t_{\theta} - t_{\theta}(x)) P(x \mid \theta') dx$$

3. For each θ , find the critical value $t_{\theta,c}$ s.t.

$$P(t_{\theta} \mid \theta') dt_{\theta} \leq \alpha$$

$$t_{\theta,c}$$

4. Perform experiment, get x_{obs} , report confidence set $\{\theta \mid t_{\theta}(x_{obs}) < t_{\theta,c}\}$

Again, the set is the random variate, and will contain (unknown) θ_{true} with probability 1- α . Dimension of θ and x are arbitrary.

If θ is 1-d and t_{θ} is monotone, can make a <u>Feldman-Cousins</u> interval.

$$t_{\mu} = -2\ln\frac{\mathscr{L}(\mu)}{\mathscr{L}(\hat{\mu})}$$

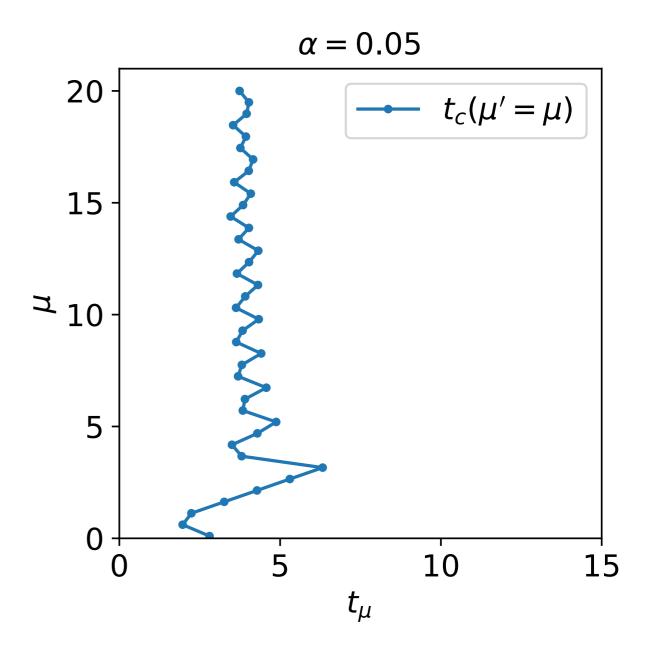
22 Feb. 3, 2023 Nick Smith I Statistics

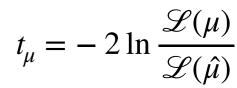
• Poisson example _ $P(x \mid \mu) = \frac{\mu^{x} e^{-\mu}}{x!}$

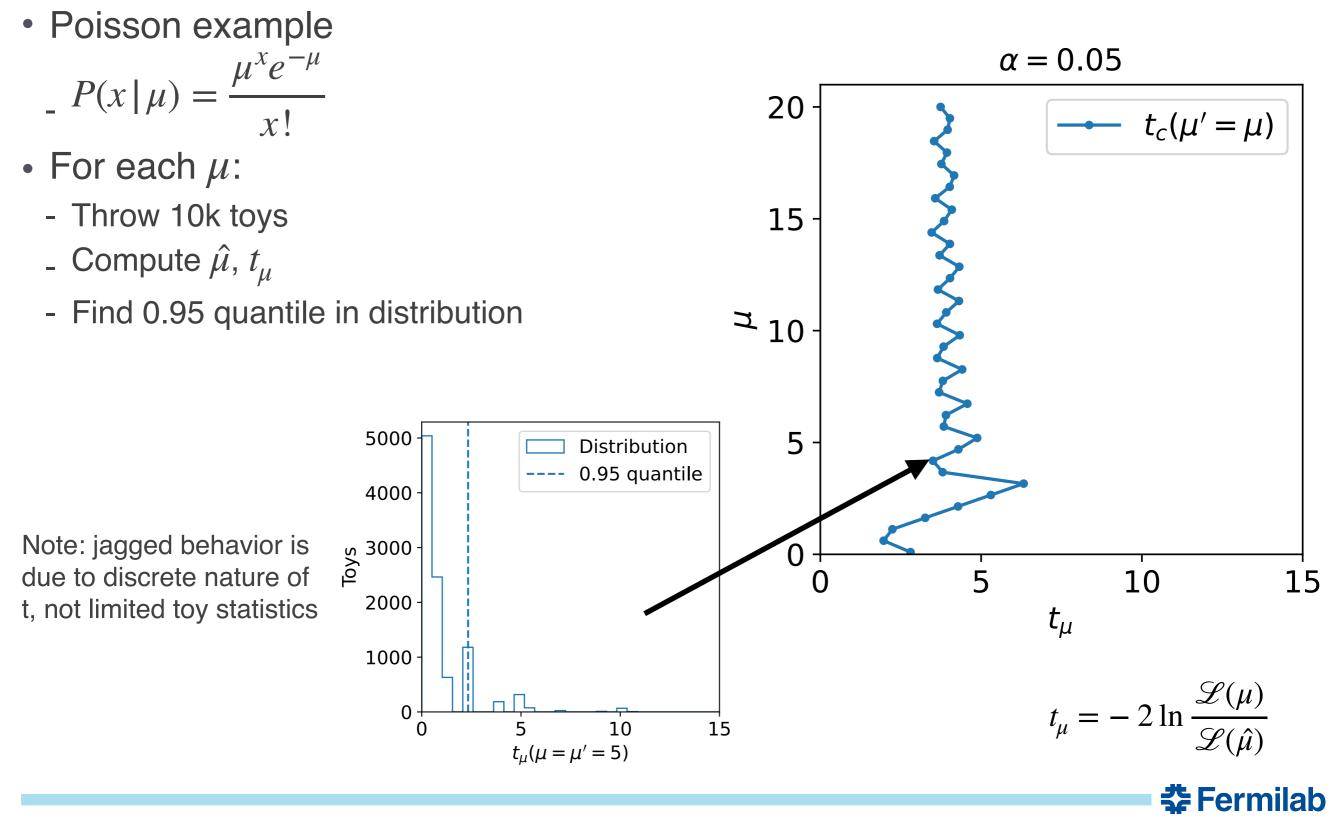
$$t_{\mu} = -2\ln\frac{\mathscr{L}(\mu)}{\mathscr{L}(\hat{\mu})}$$

$$P(x \mid \mu) = \frac{\mu^{x} e^{-\mu}}{x!}$$

- For each μ :
 - Throw 10k toys
 - Compute $\hat{\mu}$, t_{μ}
 - Find 0.95 quantile in distribution

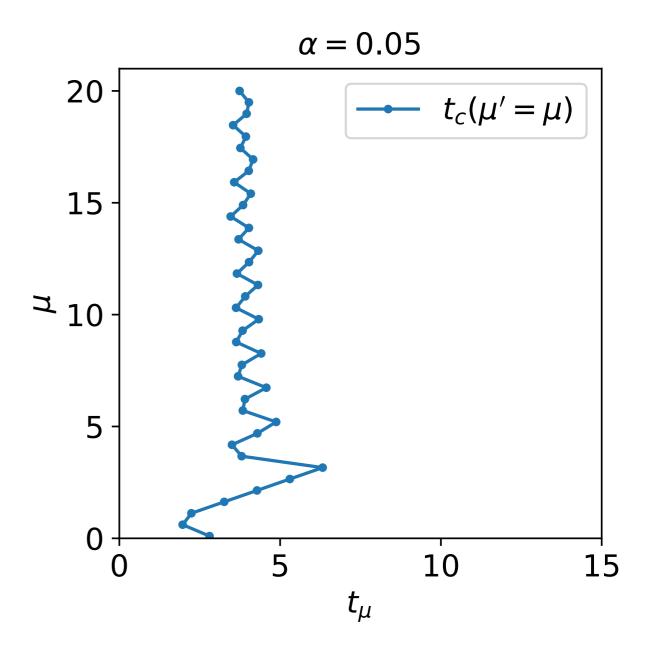


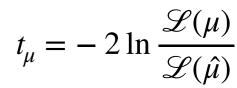




$$P(x \mid \mu) = \frac{\mu^{x} e^{-\mu}}{x!}$$

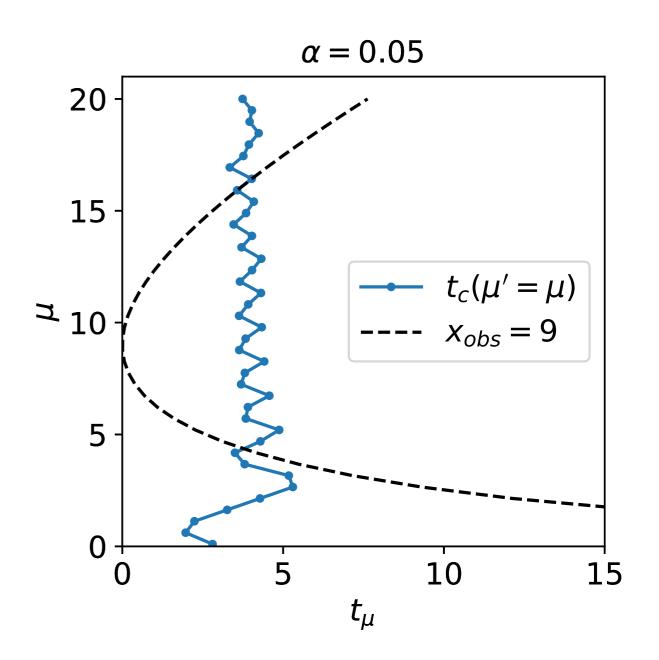
- For each μ :
 - Throw 10k toys
 - Compute $\hat{\mu}$, t_{μ}
 - Find 0.95 quantile in distribution

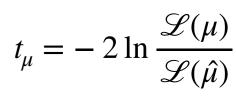




$$P(x \mid \mu) = \frac{\mu^{x} e^{-\mu}}{x!}$$

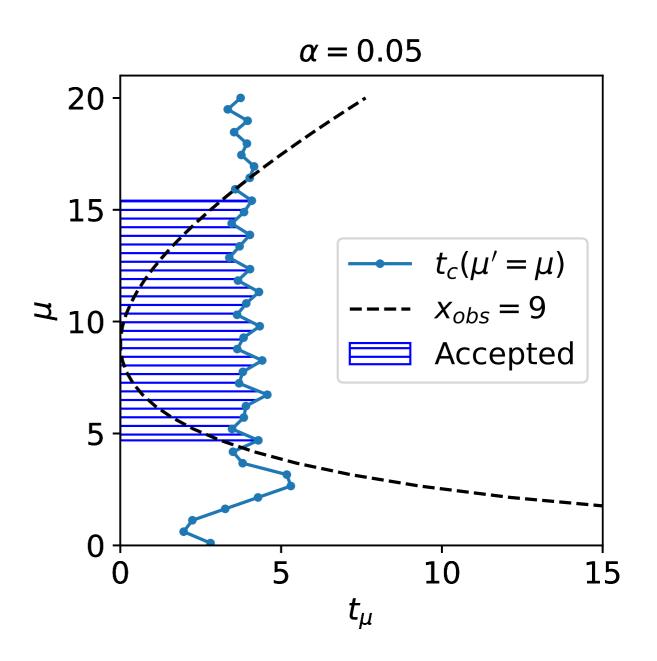
- For each μ :
 - Throw 10k toys
 - Compute $\hat{\mu}$, t_{μ}
 - Find 0.95 quantile in distribution
- Draw $t_{\mu}(x_{obs})$ contour

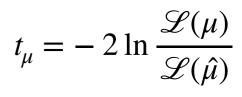




$$P(x \mid \mu) = \frac{\mu^{x} e^{-\mu}}{x!}$$

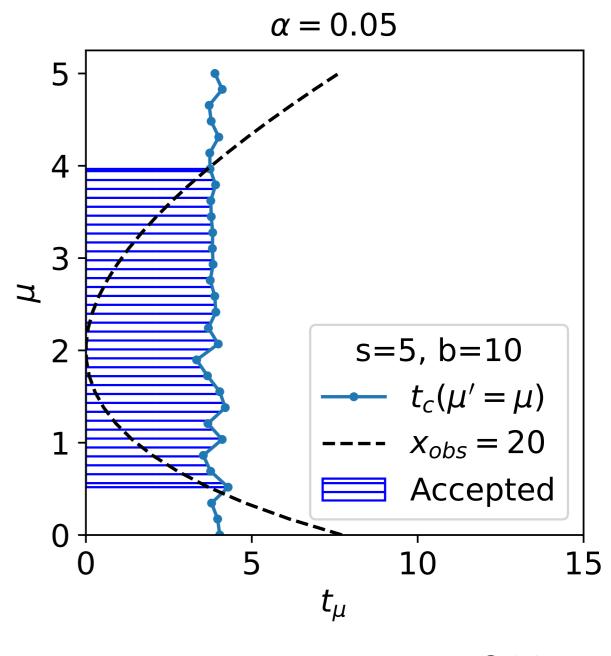
- For each μ :
 - Throw 10k toys
 - Compute $\hat{\mu}$, t_{μ}
 - Find 0.95 quantile in distribution
- Draw $t_{\mu}(x_{obs})$ contour
- Accept $t_{\mu}(x_{obs}) < t_{\mu,c}$





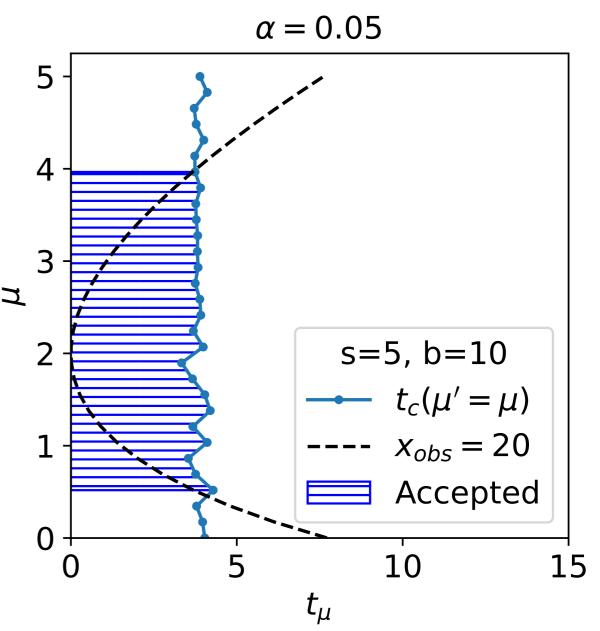
• Poisson with background example $P(x | \mu s + b) = \frac{(\mu s + b)^{x} e^{-(\mu s + b)}}{x!}$ - s=5, b=10 fixed, x=20

- Poisson with background example $P(x | \mu s + b) = \frac{(\mu s + b)^{x} e^{-(\mu s + b)}}{x!}$ - s=5, b=10 fixed, x=20
- Plan: set upper limit on μ



$$t_{\mu} = -2\ln\frac{\mathscr{L}(\mu)}{\mathscr{L}(\hat{\mu})}$$

- Poisson with background example $P(x \mid \mu s + b) = \frac{(\mu s + b)^{x} e^{-(\mu s + b)}}{x!}$
 - s=5, b=10 fixed, x=20
- Plan: set upper limit on μ
- Problem: two-sided region
 - We should not consider $\hat{\mu} > \mu$ to indicate less \exists compatibility with a model that assumes a rate μ .



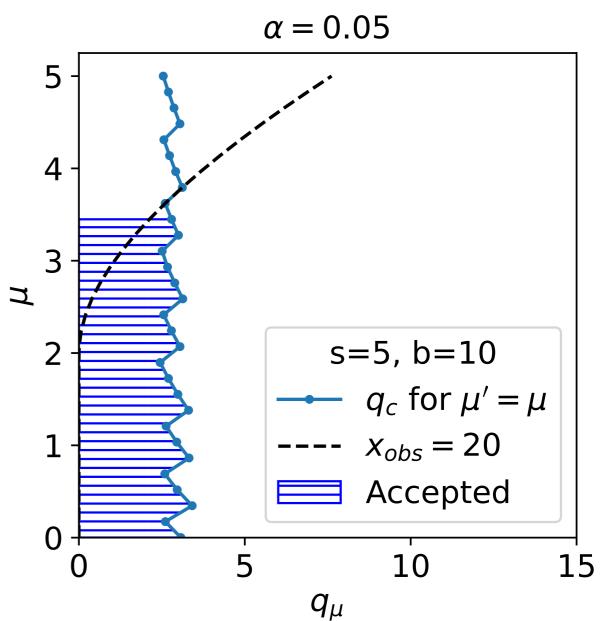
$$t_{\mu} = -2\ln\frac{\mathscr{L}(\mu)}{\mathscr{L}(\hat{\mu})}$$

Likelihood ratio examples

- Poisson with background example $P(x \mid \mu s + b) = \frac{(\mu s + b)^{x} e^{-(\mu s + b)}}{x!}$
 - s=5, b=10 fixed, x=20
- Plan: set upper limit on μ
- Problem: two-sided region
 - We should not consider $\hat{\mu} > \mu$ to indicate less \exists compatibility with a model that assumes a rate μ .
- Solution: modify test statistic

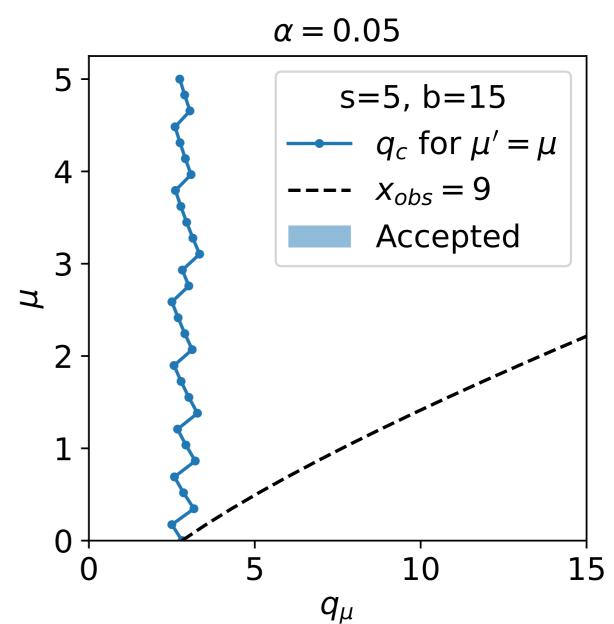
• Define $q_{\mu} = -2 \ln \frac{\mathscr{L}(\mu)}{\mathscr{L}(\min(\mu, \hat{\mu}))}$

• i.e. over-fluctuations are "not extreme"



Likelihood ratio examples

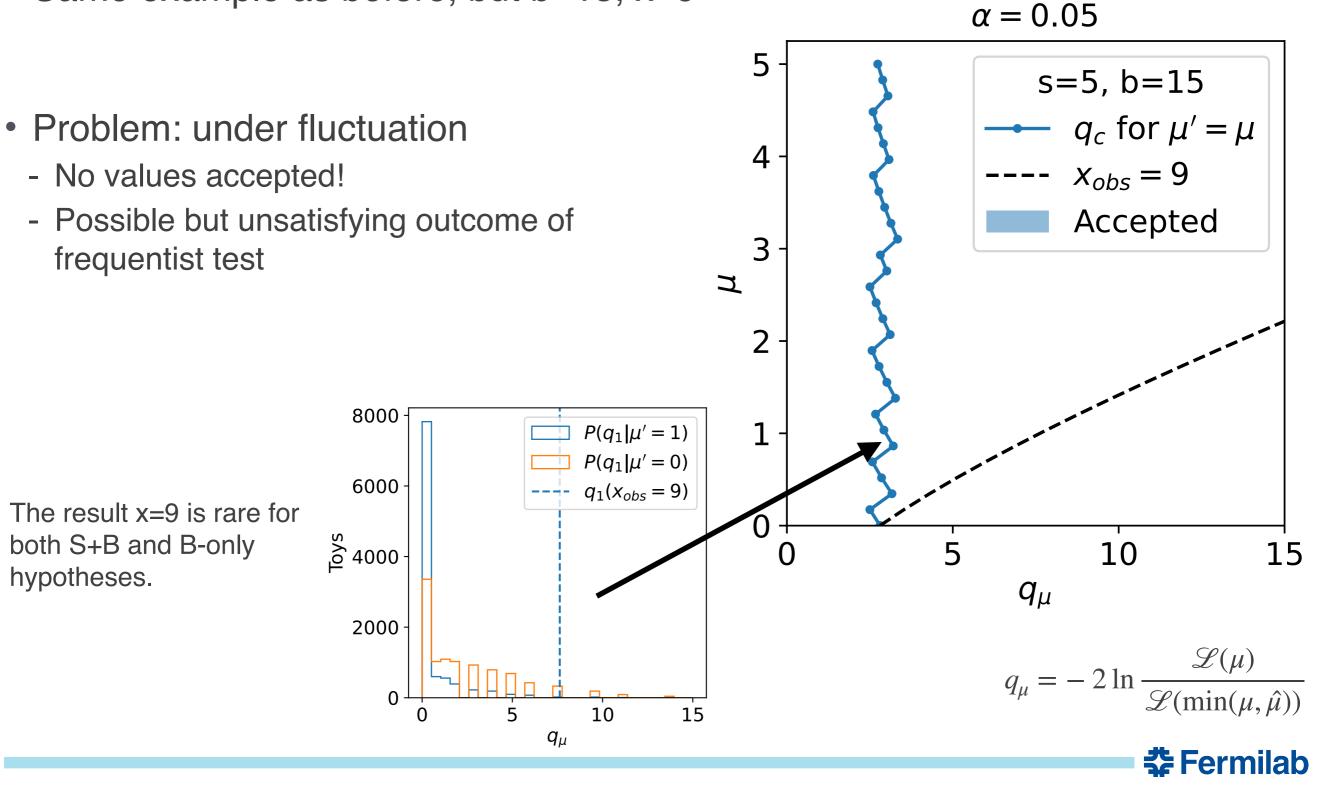
- Same example as before, but b=15, x=9
- Problem: under fluctuation
 - No values accepted!
 - Possible but unsatisfying outcome of frequentist test



$$q_{\mu} = -2\ln\frac{\mathscr{L}(\mu)}{\mathscr{L}(\min(\mu, \hat{\mu}))}$$

Likelihood ratio examples

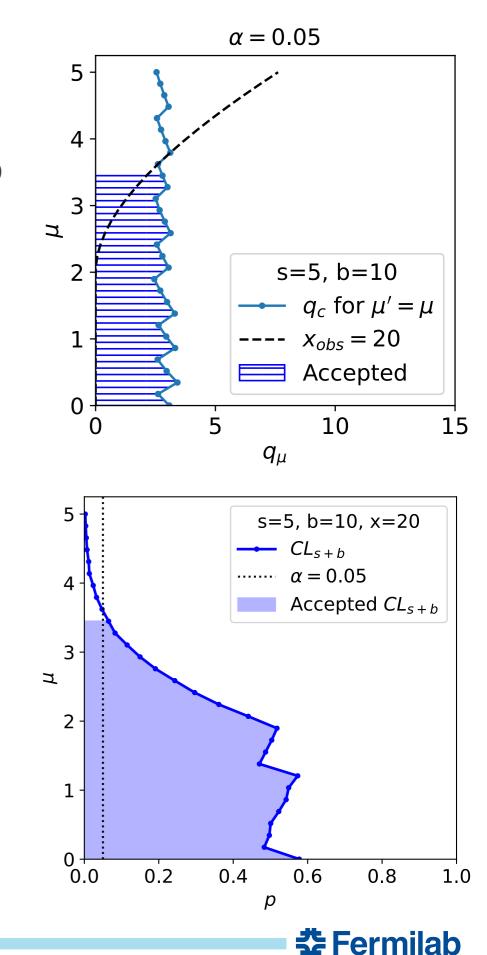
• Same example as before, but b=15, x=9



- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also <u>PDG 40.4.2.4</u>
- First we reformulate our old test:

Define
$$CL_{s+b} = p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} \mid \mu' = \mu) dt_{\mu}$$

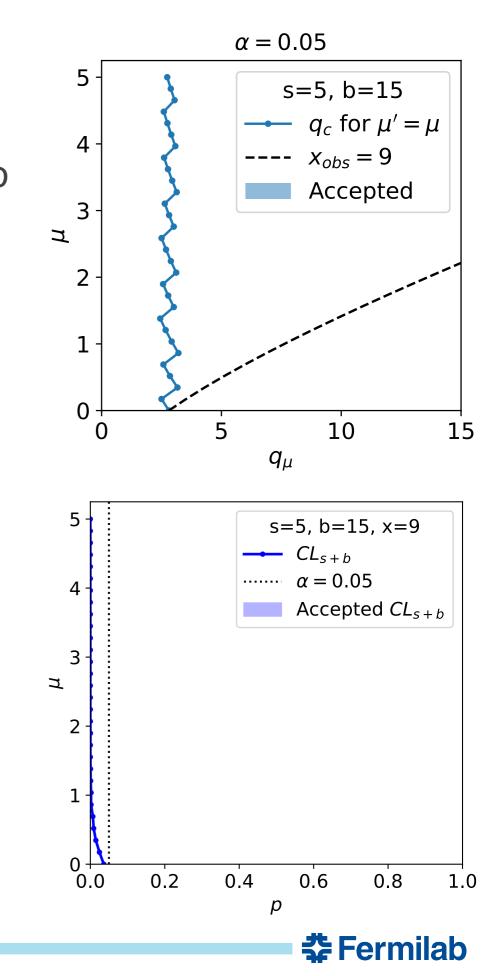
- This is a p-value
- Then we accept the region $CL_{s+b} > \alpha$
 - Right: initial S+B example reformulated



- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also <u>PDG 40.4.2.4</u>
- First we reformulate our old test:

Define
$$CL_{s+b} = p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} \mid \mu' = \mu) dt_{\mu}$$

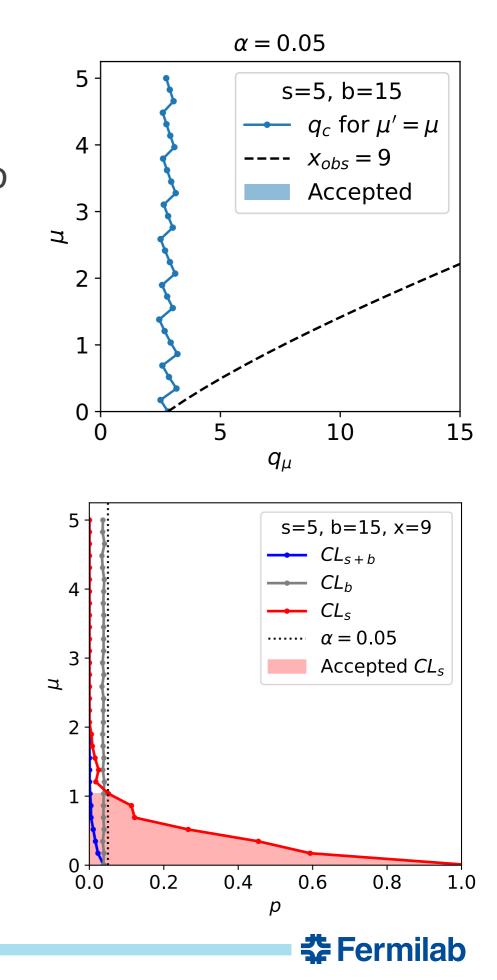
- This is a p-value
- Then we accept the region $CL_{s+b} > \alpha$
 - Right: under-fluctuation S+B example reformulated



- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also PDG 40.4.2.4
- First we reformulate our old test:

Define
$$CL_{s+b} = p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} \mid \mu' = \mu) dt_{\mu}$$

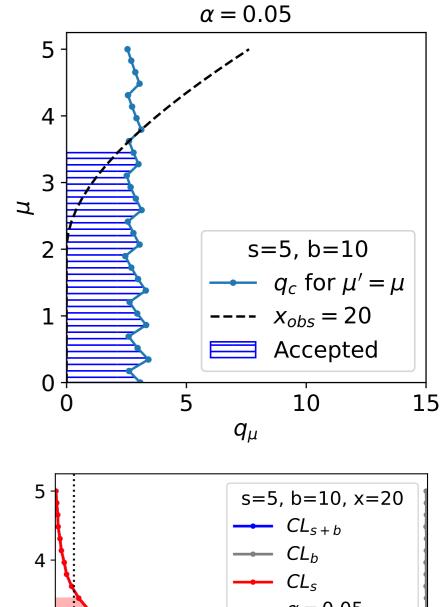
- Now define background-only p-value $CL_{b} = 1 - p_{b} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} | \mu' = 0) dt_{\mu}$
- Accept instead $CL_s = CL_{s+b}/CL_b > \alpha$

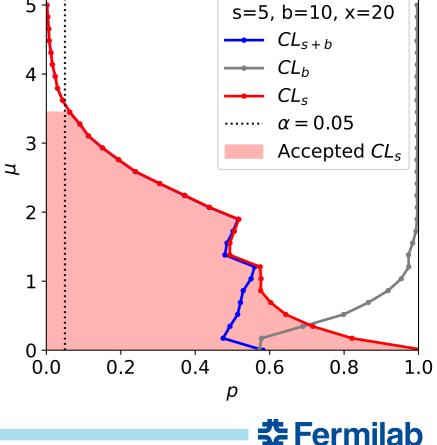


- CL_s criterion departs from purely frequentist CL to ameliorate the null set problem (among others)
 - Original expositions by <u>A. Read</u>, <u>T. Junk</u>
 - See also <u>PDG 40.4.2.4</u>
- First we reformulate our old test:

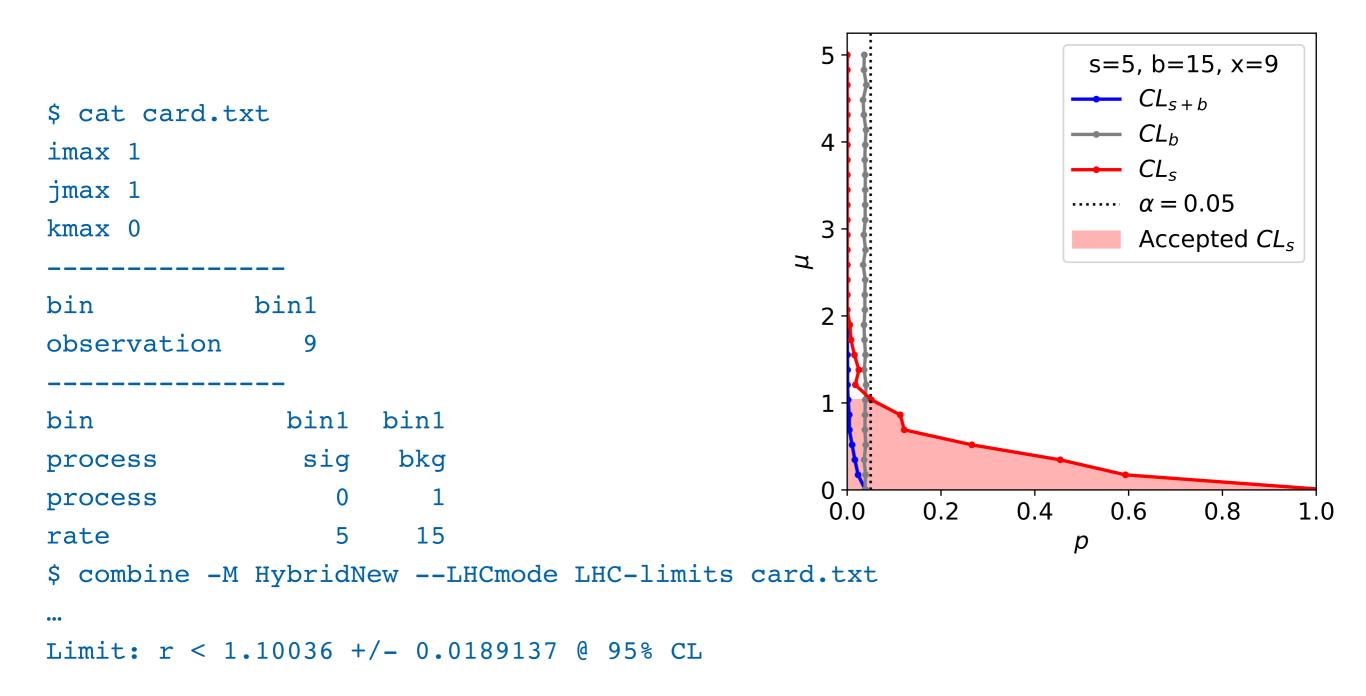
Define
$$CL_{s+b} = p_{\mu} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} | \mu' = \mu) dt_{\mu}$$

- Now define background-only p-value $CL_{b} = 1 - p_{b} = \int_{t_{\mu}(x_{obs})}^{\infty} P(t_{\mu} | \mu' = 0) dt_{\mu}$
- Accept instead $CL_s = CL_{s+b}/CL_b > \alpha$
 - No effect in the first example



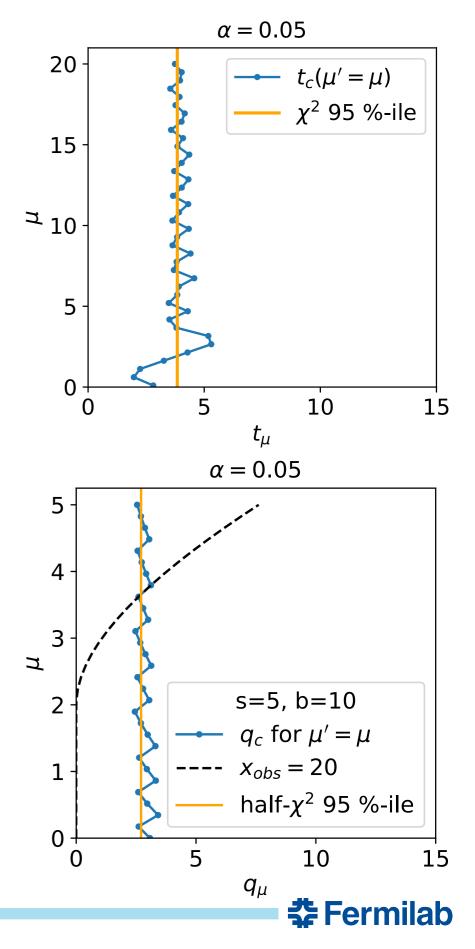


Finally, a combine command



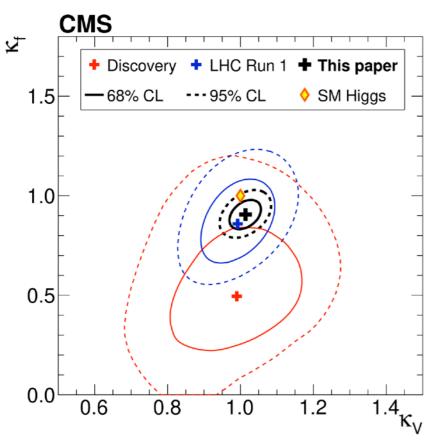
Asymptotic behavior

- Notice how $t_{\mu,c}$ and $q_{\mu,c}$ tend towards a constant?
- This is <u>Wilk's theorem</u> in action
 - Statement: as sample size grows, the distribution of the likelihood ratio $P(t_{\theta}|\theta')$ approaches a χ^2 distribution
 - With df = dim(θ)
 - Hence we can approximate by just evaluating $t_{\theta}(x_{obs})!$
- For q, formulas slightly more complex
 - <u>CCGV</u> provide the recipe: non-central half- χ^2
 - The non-centrality is found using the Asimov dataset
 - A special x_{μ} for a given μ such that $\hat{\mu}(x) = \mu$
 - Note for Poisson data, it may be non-integral!
 - This dataset produces the median expected limit



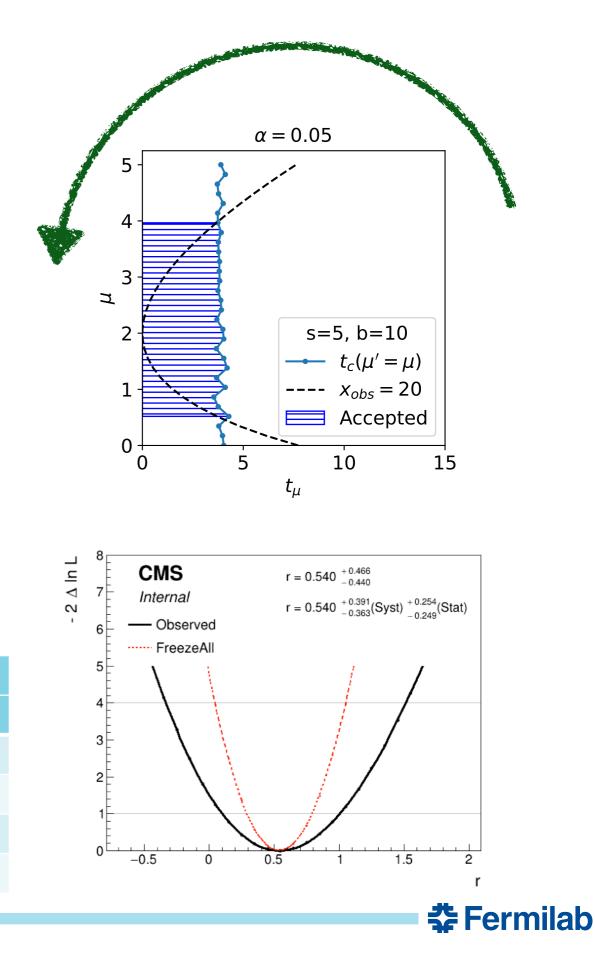
Asymptotic behavior

This is how we make deltaNLL contours



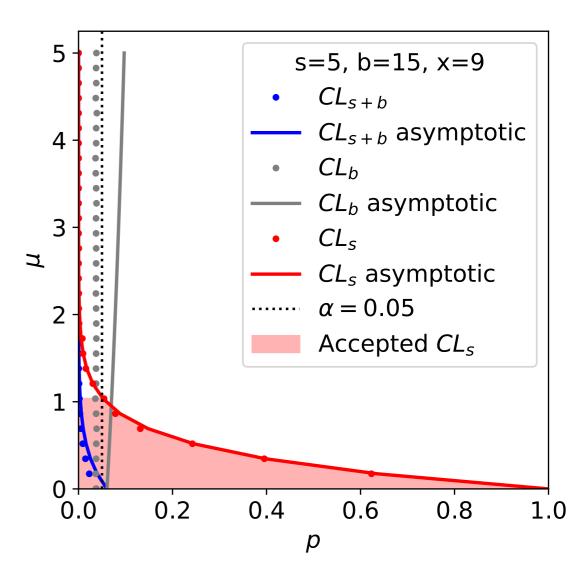
scipy.stats.chi2.ppf(q, df)

Quantile	t _c		
	df=1	df=2	
0.68	0.989	2.279	
1σ (0.6827)	1	2.296	
0.95	3.841	5.991	
2σ (0.9545)	4	6.180	

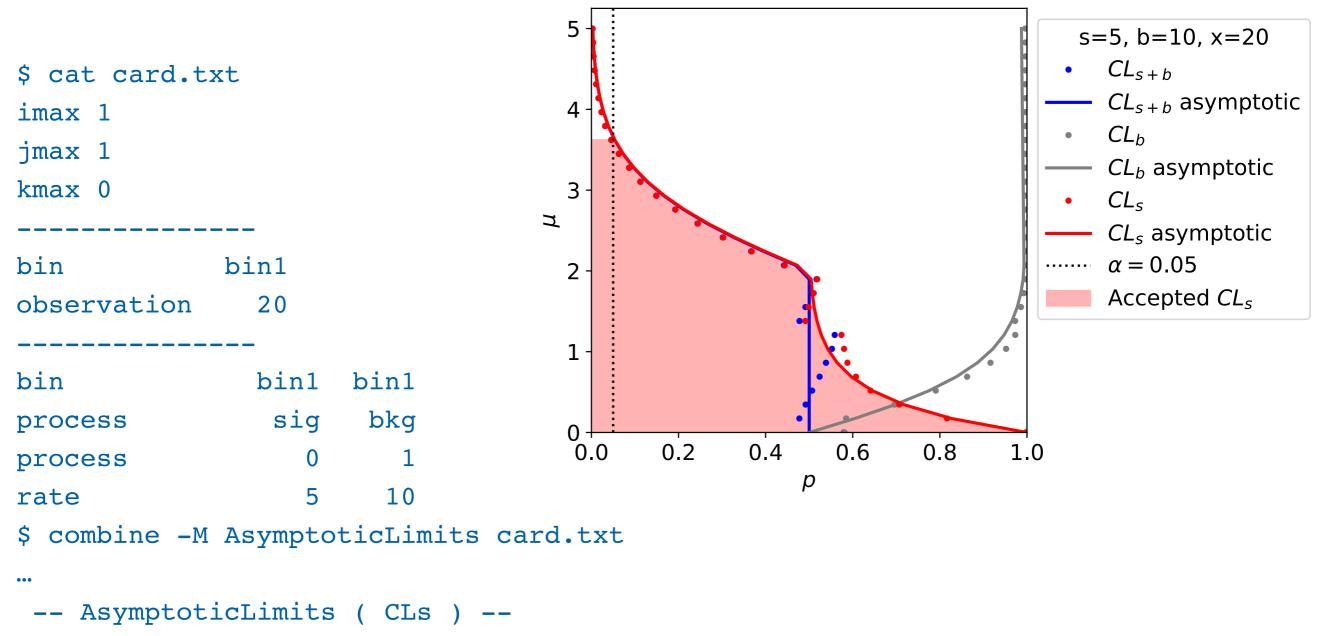


AsymptoticLimits in combine

c ast as ad to	-1			
\$ cat card.txt				
imax 1				
jmax 1				
kmax 0				
bin	bin1			
observation	9			
bin	bin1	bin1		
process	sig	bkg		
process	0	1		
rate	5	15		
<pre>\$ combine -M AsymptoticLimits card.txt</pre>				
•••				
AsymptoticLimits (CLs)				
Observed Limit: r < 1.0502				



AsymptoticLimits in combine



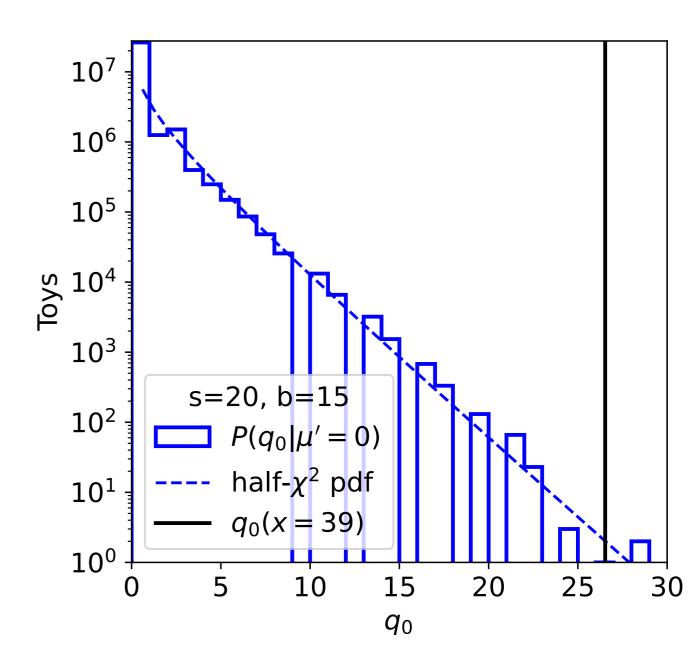
Observed Limit: r < 3.6595

Test statistic for discovery

- Poisson with background example $P(x | \mu s + b) = \frac{(\mu s + b)^{x} e^{-(\mu s + b)}}{x!}$ - s=20, b=15 fixed, x=39
- Cannot use t_{μ} :
 - Severe under-fluctuation would count as discovery! Certainly something was discovered, but not an excess over background. Disallow in test statistic:

• Define
$$q_0 = -2 \ln \frac{\mathscr{L}(0)}{\mathscr{L}(\max(0,\hat{\mu}))}$$

- i.e. under-fluctuations are "not extreme" - Deceptively simple result: $Z = \sqrt{q_0(x_{obs})}$
 - Only true if one POI



口 Fermilab

Adding uncertainties

Also changing notation (sorry): θ is changing

- Adding some background uncertainty to our model
 - Let $\mathscr{P}(n \mid \lambda)$ stand for Poisson pdf, and $\mathscr{N}(x \mid \mu, \sigma)$ for Normal pdf

- Adding some background uncertainty to our model
 - Let $\mathscr{P}(n \mid \lambda)$ stand for Poisson pdf, and $\mathscr{N}(x \mid \mu, \sigma)$ for Normal pdf
- Option 1:
 - $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b(1 + \delta \theta_b)) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
 - (for some δ close to 0) Not great: b should not go negative. In combine: trG

- Adding some background uncertainty to our model
 - Let $\mathscr{P}(n \mid \lambda)$ stand for Poisson pdf, and $\mathscr{N}(x \mid \mu, \sigma)$ for Normal pdf
- Option 1:
 - $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b(1 + \delta \theta_b)) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
 - (for some δ close to 0) Not great: b should not go negative. In combine: trG
- Option 2:
 - $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b\kappa^{\theta_b}) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
 - (for some κ close to 1) Better: log-normal. In combine: lnN

- Adding some background uncertainty to our model
 - Let $\mathscr{P}(n \mid \lambda)$ stand for Poisson pdf, and $\mathscr{N}(x \mid \mu, \sigma)$ for Normal pdf
- Option 1:
 - $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b(1 + \delta \theta_b)) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
 - (for some δ close to 0) Not great: b should not go negative. In combine: trG

• Option 2:

- $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b\kappa^{\theta_b}) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
- (for some κ close to 1) Better: log-normal. In combine: lnN
- Option 3:
 - $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b\theta_b) \mathcal{P}(n_{CR} \mid b_{CR}\theta_b)$
 - If such a background-pure control region can be constructed
 - In combine: gmN or rateParam

- Adding some background uncertainty to our model
 - Let $\mathscr{P}(n \mid \lambda)$ stand for Poisson pdf, and $\mathscr{N}(x \mid \mu, \sigma)$ for Normal pdf
- Option 1:
 - $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b(1 + \delta \theta_b)) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
 - (for some δ close to 0) Not great: b should not go negative. In combine: trG

• Option 2:

- $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b\kappa^{\theta_b}) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
- (for some κ close to 1) Better: log-normal. In combine: lnN
- Option 3:
 - $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b\theta_b) \mathcal{P}(n_{CR} \mid b_{CR}\theta_b)$
 - If such a background-pure control region can be constructed
 - In combine: gmN or rateParam
- ...and many more
 - In all cases we now have a new observable (θ_0 , n_{CR}), a new parameter θ_b , and several new constants (δ , κ , b_{CR}) to compute (e.g. from simulation)

- Split likelihood parameters into *parameters of interest* (POIs) μ and nuisance parameters θ , and define *auxiliary measurements* y that target the latter
 - Then the pdf factorizes $P(x, y | \mu, \theta) = P(x | \mu, \theta)P(y, \theta)$
 - N.B. y are global observables in root

- Split likelihood parameters into *parameters of interest* (POIs) μ and nuisance parameters θ , and define *auxiliary measurements* y that target the latter
 - Then the pdf factorizes $P(x, y | \mu, \theta) = P(x | \mu, \theta)P(y, \theta)$
 - N.B. y are global observables in root
- To frequentists, P can be used as a likelihood in μ, θ
 - *Profile* away θ -dependence: $\mathscr{L}_p(\mu; x, y) = \max_{\alpha} \mathscr{L}(\mu, \theta; x, y)$
 - With L_p we can do all of what was shown before (in approximation)

- Split likelihood parameters into *parameters of interest* (POIs) μ and nuisance parameters θ , and define *auxiliary measurements* y that target the latter
 - Then the pdf factorizes $P(x, y | \mu, \theta) = P(x | \mu, \theta)P(y, \theta)$
 - N.B. y are global observables in root
- To frequentists, P can be used as a likelihood in μ , θ
 - Profile away θ -dependence: $\mathscr{L}_p(\mu; x, y) = \max_{\rho} \mathscr{L}(\mu, \theta; x, y)$
 - With L_p we can do all of what was shown before (in approximation)
- Bayesians can insert a *ur-prior* $P(\theta)$ and use Bayes' theorem to get $P(\theta | y)$ _ Then *marginalize* out θ : $P(x | \mu) = \int P(x, y | \mu, \theta) P(\theta | y) d\theta = \int P(x, y | \mu, \theta) \frac{P(y | \theta) P(\theta)}{P(y)}$
 - Proceed as before with $P(x \mid \mu)$

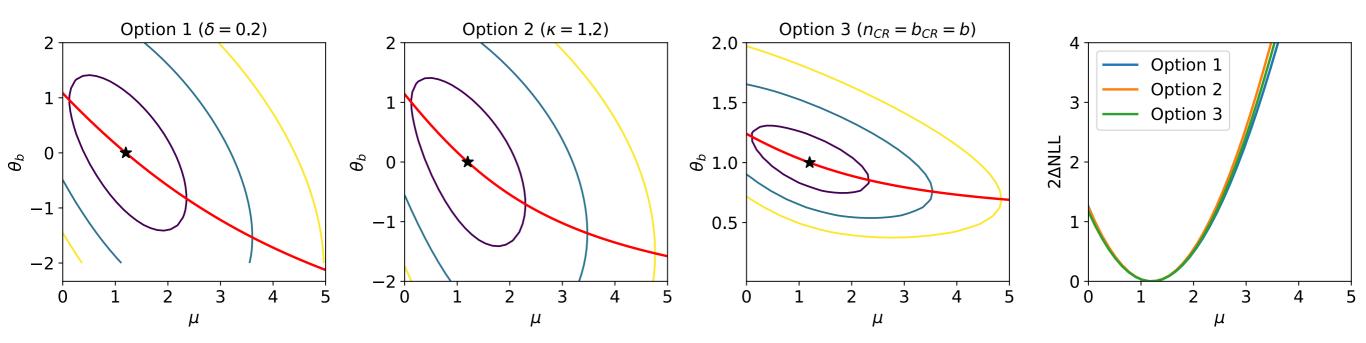
- Split likelihood parameters into *parameters of interest* (POIs) μ and nuisance parameters θ , and define *auxiliary measurements* y that target the latter
 - Then the pdf factorizes $P(x, y | \mu, \theta) = P(x | \mu, \theta)P(y, \theta)$
 - N.B. y are global observables in root
- To frequentists, P can be used as a likelihood in μ , θ
 - Profile away θ -dependence: $\mathscr{L}_p(\mu; x, y) = \max_{\rho} \mathscr{L}(\mu, \theta; x, y)$
 - With L_p we can do all of what was shown before (in approximation)
- Bayesians can insert a *ur-prior* $P(\theta)$ and use Bayes' theorem to get $P(\theta | y)$ _ Then *marginalize* out θ : $P(x | \mu) = \int P(x, y | \mu, \theta) P(\theta | y) d\theta = \int P(x, y | \mu, \theta) \frac{P(y | \theta) P(\theta)}{P(y)}$
 - Proceed as before with $P(x \mid \mu)$
- Renewed interest in publishing such statistical models: <u>arxiv:2109.04981</u>

🚰 Fermilab

- Enables recasting in either language

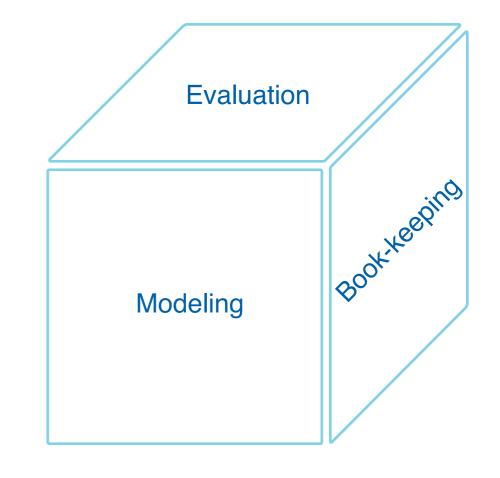
Profiling example

- Profile likelihood for the single-bin background uncertainty example
 - Option 1: $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b(1 + \delta \theta_b)) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
 - Option 2: $P(n \mid \mu, \theta_b) = \mathcal{P}(n \mid \mu s + b\kappa^{\theta_b}) \mathcal{N}(\theta_0 \mid \theta_b, 1)$
 - Option 3: $P(n \mid \mu, \theta_b) = \mathscr{P}(n \mid \mu s + b\theta_b) \mathscr{P}(n_{CR} \mid b_{CR}\theta_b)$
 - s=10, b=25, x=37



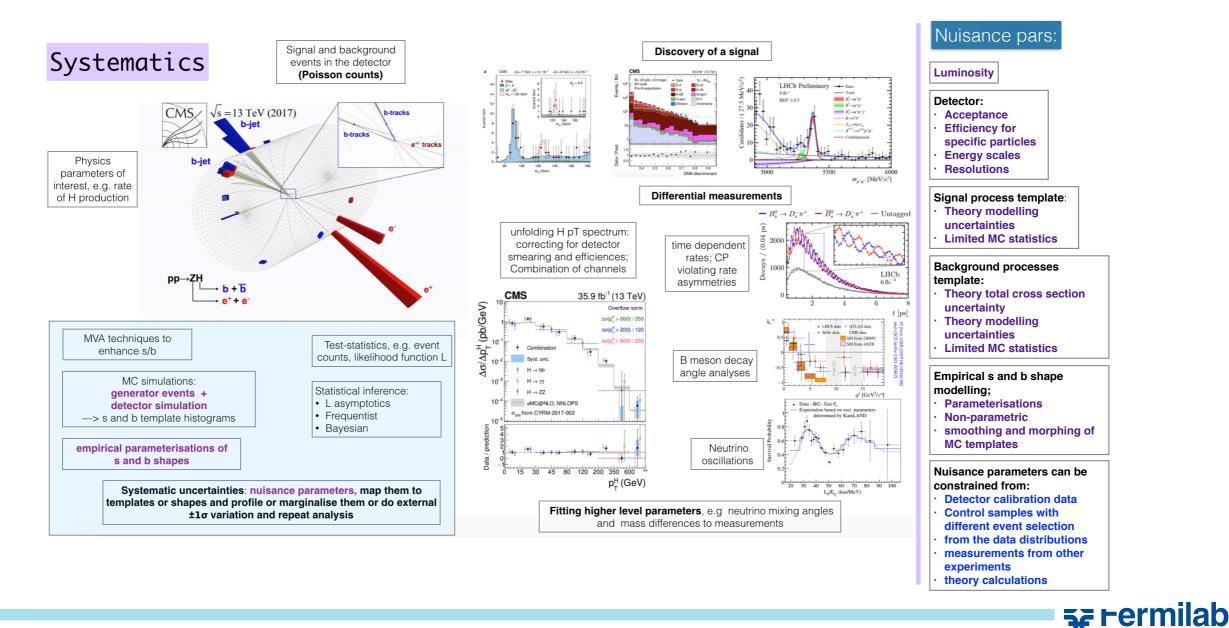
Typical tasks in enumerating systematics

- Enumerate effects to get dimension of $\boldsymbol{\theta}$
 - Don't forget anything! Unknown unknowns?
- Choose a parameterization
 - e.g. the options 1-3 from before
- Evaluate the constants
 - In practice: interpolate between shifted or weighted MC
- Iterate
 - Compromise: fidelity/computability/practicality
 - Prune low-impact effects
 - Initial model might not fit observed y well
- A core feature of *Combine* is to simplify these tasks



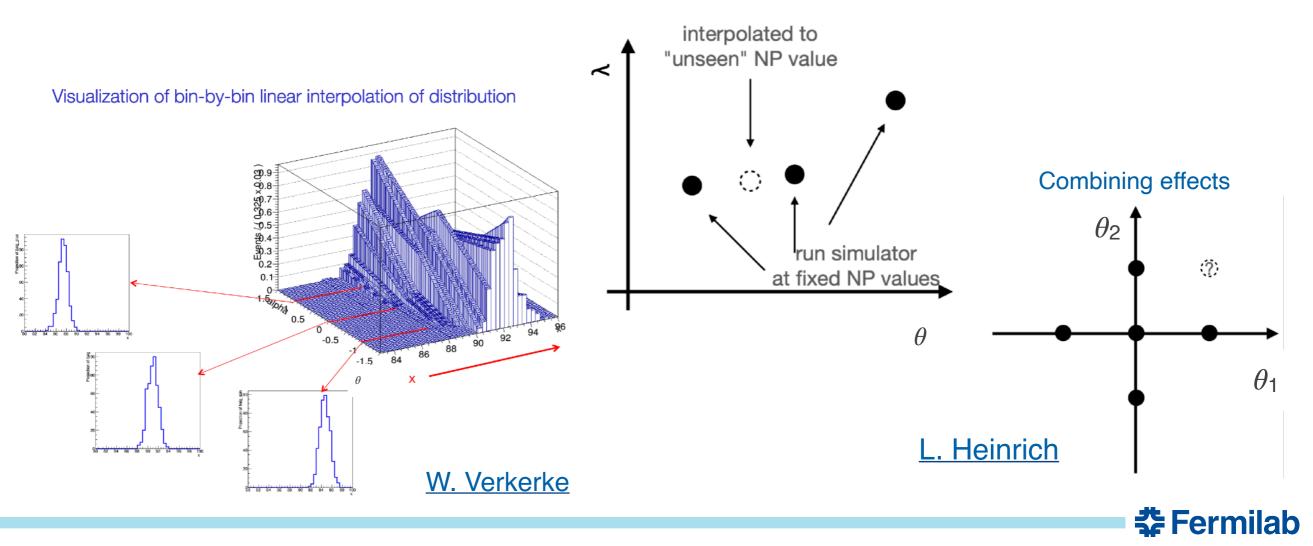
Modeling techniques

- Can be a whole workshop
 - Was: PHYSTAT-Systematics 2021
 - Excellent presentations covering a wide range of techniques
 - A one-slide overview was produced (more on types than techniques)



Modeling techniques

- Rich set of interpolation/extrapolation techniques at end-stage
 - Morphing: vertical, horizontal, moment; splines; gaussian process; asymmetric shift interpolation; additive/multiplicative effects; MC stat uncertainty, <u>BB-lite;</u> ...
 - i.e. what is done in <u>RooFit/pyhf/zfit/iMinuit/combine</u>/etc.
 - What features do each of these tools offer? Nobody has it all!



The end

Hopefully you have some idea now what this means

"An observed (expected) upper limit is placed on the signal strength μ , using the profile likelihood ratio test statistic, following the CL_s criterion, under asymptotic assumptions, and found to be ..."

Additional references

- Procedure for LHC Higgs combination <u>http://cdsweb.cern.ch/record/1379837</u>
- R. Cousins, Statistics in Theory https://arxiv.org/abs/1807.05996
- Asymptotic formulae for likelihood-based tests "CCGV" <u>https://arxiv.org/abs/1007.1727</u>
- Publishing statistical models https://arxiv.org/abs/2109.04981

