
www.kit.eduKIT – The Research University in the Helmholtz Association

Dependability of Software-intensive Systems

Checkpointing for long-running Machine Learning
Tasks
Jonas Eppelt, Matthias Schnepf, Giacomo De Pietro, Günter Quast

©Nintendo K.K.

Institute for Experimental Particle Physics (ETP)2 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

A typical HEP job

A job needs:
Inputs

Hardware to run on

Outputs

In general, transient
outputs only exist for the
duration of the job.

inputs

outputs

hardware
transient
storage

Institute for Experimental Particle Physics (ETP)3 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Jobs can be interrupted

A job can fail because of:
(Temporary) failure of
infrastructure

Time limits on its
infrastructure

input

outputs

hardware
transient
storage

Institute for Experimental Particle Physics (ETP)4 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Jobs can be interrupted

A job can fail because of:
(Temporary) failure of
infrastructure

Time limits on its
infrastructure

input

outputs

hardware
transient
storage

checkpoint

A checkpoint stores
the job’s current
state to allow its
continuation.

Institute for Experimental Particle Physics (ETP)5 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Typical solution in HEP: parallelize by data
Jobs are trivial parallelizable:

Reduces runtime per Job to abide
by site restrictions.

Only the failed batches have to be
reprocessed.

Input

Outputs

Input

Outputs

Input

Outputs

Input

Outputs

Institute for Experimental Particle Physics (ETP)6 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

The special case of Machine Learning (ML)
trainings

A step always relies on the previous
step:

We can not use the typical HEP strategy
of running on batches.

They can have a long runtime
(days/weeks).

Failure results in a complete retraining.

initialize training

pass data

end training

calculate loss

calculate gradient

update model

Institute for Experimental Particle Physics (ETP)7 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

We need checkpoints!

restore checkpoint

program execution
program execution

create checkpoint

store checkpoint

Institute for Experimental Particle Physics (ETP)8 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

The term “checkpoint” in Computing and ML
Computing checkpoints:

Goal: Continue work on different
place and time

Includes all necessary information on
the jobs state.

Only the latest state is needed.

Stored persistently

ML checkpoints:
Goal: Find the best performing model

Do not always include the full state of
the training

State of Callbacks, Logs, ...

Multiple checkpoints are kept to analyze
after the training

Find best model by higher level metric,
create ensembles, debug training, ….

(Usually) stored on transient storage

Institute for Experimental Particle Physics (ETP)9 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

What do we need to checkpoint?
Create/Restore ML checkpoints:

Already included in major ML libraries

When to checkpoint:
Induced by the side

Regularly

Rescheduling
Batch systems

Workflow management
systems

We need a place to bring
them together.

Storing/transferring Checkpoints
Shared file system

Grid storage

Batch system

Institute for Experimental Particle Physics (ETP)10 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

A Python class to bring everything together

One tool to configure
everything needed.
Set custom checkpoint and
restore function.
Not depending on a specific
ML framework.

Get started here:
https://github.com/JonasEppelt/Checkpointer

Institute for Experimental Particle Physics (ETP)11 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

When to checkpoint

Planned end of job:
Site has time to give a signal

This signal must be relayed to the
python process.

Internally, the Checkpointer is
already setup to catch the signals
10 and 15.

Upon receiving, it will:
Ensure the current checkpoint exist.
Transfer it as configured.
Exit with 85

Institute for Experimental Particle Physics (ETP)12 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

When to checkpoint

Unplanned end of job:
No time to send a signal

Proactively do regular checkpoints

Frequency can be configured with
”checkpoint_every” to only create
checkpoints every i-th call of the
step function.

Institute for Experimental Particle Physics (ETP)13 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Storing Checkpoints

If no mode is set, the local checkpoint is assumed to be persistent.
Custom behavior can be set using the manual mode.
For shared file systems:

For grid storage:

Institute for Experimental Particle Physics (ETP)14 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Interplay with

HTCondor has its own mechanism to store checkpoints and reschedule.
Settings needed in the JDL file:

checkpoint_exit_code (the code your program will exit with, to signal a
checkpoint exists and it wants to be rescheduled)

transfer_checkpoint_files defines the files to checkpoint

when_to_transfer_output = ON_EXIT_OR_EVICT

Python class can infer these settings.
The provided settings will

be overwritten with this!

Institute for Experimental Particle Physics (ETP)15 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Interplay with Keras and Lightning

In high-level libraries the training loop is not directly accessible.
Instead Callbacks are used.

The Checkpointer comes with callbacks for Keras and Lightning.

Institute for Experimental Particle Physics (ETP)16 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

A few notes:

Checkpointing also helps with any other kind of crashes:
Crashing trainings due to numerical instabilities.

Crashes due to configuration errors in a later training phase.

OOM Errors when working with sparse inputs (e.g. GNNs)

Currently, there is no support to run in Jupyter.
Though, you might succeed with some versions of Jupyter.

Checkpointing can also be used to do “greener” computing:
Jobs are run if renewable energy is plentiful.

Jobs are stopped if renewable energy is scarce.

Institute for Experimental Particle Physics (ETP)17 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Conclusions

Checkpointing ML training enables
resistance to failures.

abiding by time constraints.

A Python class unifies the necessary
configurations.

https://gitlab.desy.de/jonas.eppelt/
checkpointer

signal

training step

create checkpoint

transfer checkpoint

end training

reschedule

initialize training & restore checkpoint

Institute for Experimental Particle Physics (ETP)18 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Backup

Institute for Experimental Particle Physics (ETP)19 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Rescheduling with luigi

Only the final model must be in the Tasks outputs
Use a central scheduler:

Institute for Experimental Particle Physics (ETP)20 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Technical Details – Core Functions

checkpoint(self, value)

If no value is given:

Load value from internal value

Read it with configured
restore function

restore(self, default)

Copy checkpoint file
from configured storage

If a local checkpoint exists:

Else:

Return default

Call the configured checkpoint function

Set internal checkpoint to value

Institute for Experimental Particle Physics (ETP)21 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Technical Details – Helper Functions

transfer_checkpoint(self)

Call configured transfer method

checkpoint(self, value)

step(self, value)

Set internal checkpoint to value

If checkpoint frequency reached:

transfer_checkpoint(self, value)

Institute for Experimental Particle Physics (ETP)22 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Technical Details – Signal Traps

on_SIGTERM(self)

checkpoint()

transfer_checkpoint()

Will default to internally stored value

Delete temporary checkpoint files

exit(checkpoint_exit_code) Default exit code is 85

Institute for Experimental Particle Physics (ETP)23 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Technical Details – key configuration

local_checkpoint_file: A local path where the current checkpoint will be stored
checkpoint_function: A function, that takes a path and an arbitrary object and
writes the checkpoint file
restore_function: A function, that takes a path and returns the check-pointed
objects.
checkpoint_transfer_mode: How to transfer the checkpoints to persistent
storage. Supported are “None”, “shared”, “htcondor”, “xrootd” and manual.
checkpoint_every: Checkpoint frequency used in the “step” function.

Institute for Experimental Particle Physics (ETP)24 04.07.2024 Jonas Eppelt, Matthias Schnepf, Giacomo de Pietro, Günter Quast

Demonstrator Project: “Green” Tier3 node

Checkpointing can also be used to do “greener” computing:
Jobs are run, if renewable energy is plentiful.

Jobs are stopped, if renewable energy is scarce.

One node with GPUs on the Tier 3 center TOpAS at GridKa is configured.
Goals:

How can we get user acceptance?
What challenges arise, when putting such a system in practice?
How large is a potential CO2 saving?

German electrical energy mix is monitored using API provided by Fraunhofer
Institute for Solar Energy Systems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

