
Simplified Columnar File
Conversions with:

Zoë Bilodeau1, Jim Pivarski1

1Princeton University

Support for this work was provided by NSF cooperative agreements
OAC-1836650 and PHY-2323298 (IRIS-HEP).

Problem: Time Spent on Columnar File Conversions

● Unnecessary time and energy from physicists to convert
between file formats

● Even basic conversions require multiple lines of code, multiple
file I/O packages
○ There are a number of common modifications that take extra

time
● Many users are writing very similar code

What is hepconvert?

● High-level Python converter between ROOT, Parquet, (and
eventually) and HDF5

● Uses common I/O packages
○ Uproot
○ Awkward
○ h5py
○ Dask-awkward

Quick, Simple File Conversions

● Main goal of hepconvert is convenience

● Blocks of code -> single function call
○ One package
○ Memory management and compression handled
○ Parameters for customization

● User input oriented

Features of hepconvert:
● Features added at user request
● Converters between Parquet and ROOT
● Common file manipulations

○ Add/remove data
○ Hadd-like functionality
○ Change compression
○ Regroup data

● Address common issues
● CLI

Memory Management: Batches
● For large files, it is necessary to read and write data

in batches

● Can take time depending on file structure and I/O

package;
○ Each “batch” is a different structure
○ Always require multiple lines of code/loops

Parquet File
Row-groups Column 1

1

2

TTree (ROOT)
Entries Branch 1 Branch 2

1 data data
data data

1 data data
data

1
2
3
4
5
6

2

Parquet File
Row-groups Column 1 Column 2

1

2

data
data

2

Memory Management: Batches

● Each hepconvert function automatically reads and writes
in batches

○ (with the exception of add_histograms)

○ ROOT files over > 100MB
○ Parquet files with > 1 row-group

● Can choose step size when reading ROOT files
○ Entry size: 100
○ Data size: “100MB”

Parquet File
Row-groups Column 1 Column 2

1

2

data
data

TTree (ROOT)
Entries Branch 1 Branch 2

1 data data
data data

1 data data
data

1
2
3
4
5
6

2

Work with ROOT files:
● Pure Python; users don’t need ROOT

● Writing capabilities of Uproot

○ Currently works with flat TTrees, NanoAOD-like files
○ parquet_to_root() puts data in one TTree

● When possible, groups branches to avoid duplicate counters

Parquet to ROOT

● One Parquet file -> one TTree
○ Soon adding merge_parquet; could merge data from multiple

Parquet files to one TTree

● Writing capabilities of Awkward Array

○ Compression settings and many other options available

Parquet file to ROOT file:

>>> hepconvert.root_to_parquet("out_file.parquet", "in_file.root")

ROOT to Parquet

● One Parquet file -> one TTree
○ Soon adding merge_parquet; could merge data from multiple

Parquet files to one TTree

● Writing capabilities of Awkward Array

○ Compression settings and many other options available

ROOT file to Parquet file:

>>> hepconvert.root_to_parquet("out_file.parquet", "in_file.root")

Awkward Feature: Iterative Writing to Parquet Files

● Re-implemented ak.to_parquet_row_groups()
● Writes data to parquet files in batches (row-groups)
● Pass data as an iterable over data rather than array

Copy (and modify) ROOT Files

● Why include this? The additional features!
○ Automatically groups branches to avoid duplicate counter branches

when writing with Uproot
■ Instead of manually choosing and grouping branches with

ak.zip()
○ Branch-skimming, TTree removal, Branch removal

■ Wildcarding supported
○ Can either write to a new file or return a writable uproot object

in memory to then work with
○ Change compression type
○ Run from command-line

>>> hepconvert.copy_root("out_file.parquet", "in_file.root")

Merging TTrees and Histogram Summing (hadd-like)

● add_histograms():

○ Sums contents of histograms in many files
○ Writes to a new file

● merge_root():
○ Merges like TTrees, sums histograms from many files
○ Branch skimming, branch slimming, cuts, etc.
○ Customizable parameters similar to hadd

■ union, append, same_names
● Not dependent on ROOT!

Uproot Feature: Add Branches to an Existing TTree
● Goal:

○ uproot.add_branches(‘tree’, {branch1: data, branch2: data})
● Relation to hepconvert: merge_root()

○ Addresses common issue with CMS data
■ Users wanted to merge NanoAOD files with mismatched branches
■ Can backfill with booleans

● Problems: making it inherently as robust/flexible as possible

Jets_*

Events

Muons_*

Trigger_branch2

Jets_*

Events

Muons_*

Trigger_branch1

Uproot Feature: Adding Branches to an Existing TTree
Current state:

○ Can copy and write TBranches and TBranchElements of common data
types

○ Can copy data even if Uproot cannot write it (ex. a vector of
vectors)

○ File contents are never read into memory

Addressing Robustness:

● Rewrites TTree metadata
○ Can only handle most recent ROOT versions (generally after 2017)

● Copies old branches; copying process does not depend on branch
type/content

Command-Line Interface
● Many functions are more useful in the command line
● All functions implemented

○ Most options work; check the docs!
● Implemented with Python Package Click
● Brief example

https://hepconvert.readthedocs.io/en/latest/parquet_to_root.html

Jupyter Notebook Demo

Role of User Input

● Features added at user request
○ All features so far were at

user request
● What relevant tasks are users

spending time doing
● User interaction is necessary to

make this a useful tool

…?
Yes!

Ideas or feedback?

https://github.com/scikit-hep/hepconvert/issues

Mattermost:

CMS Coffea Users channel

Slack:

PyHEP2024

IRIS-HEP: awkward-dask, awkward-uproot

https://github.com/scikit-hep/hepconvert/issues

Thank you!

