Istituto Nazionale di Fisica Nucleare

Metaheuristic optimization for artificial neural networks and deep learning architectures

D. Pagano

UNIVERSITÀ DEGLI STUDI DI BRESCIA \& INFN PAVIA

Outline

■ Metaheuristic algorithms for optimization

■ Artificial neural networks and deep learning architectures

■ EvoMiP library for python

■ Few examples

Metaheuristic algorithms

■ The interest on metaheuristic (also know as evolutionary) algorithms (MHAs) has been growing steadily in the last decade
(Glover, 1986) heuristic: algorithms with stochastic components meta: beyond

Example

■ Minimization of the 2D-Ackley function with the Particle Swarm algorithm

$$
f(x, y)=-20 \exp \left[-0.2 \sqrt{0.5\left(x^{2}+y^{2}\right)}\right]+
$$

$$
-\exp \{0.5[\cos (2 \pi x)+\cos (2 \pi y)]\}
$$

Iteration \#30

Gradient-based methods

■ Include a large set of methods based on the calculation of the gradient of the cost (objective) function:

- Gradient descent
- Stochastic gradient descent
- Back propagation
- Levenberg Marquardt
- Conjugate gradient

■ Adaptive Moment Estimation (ADAM)
■ ...

They are extremely popular and very efficient for convex functions

■ On the other hand, they are sensitive to the choice of the initial point, to step size, and to noise in the function

■ Moreover, they can get stuck in local optima, or saddle points, failing to explore the global optimum

2D-Ackley function vs gradient descent

$$
f(x, y)=-20 \exp \left[-0.2 \sqrt{0.5\left(x^{2}+y^{2}\right)}\right]-\exp \{0.5[\cos (2 \pi x)+\cos (2 \pi y)]\}+e+20
$$

$$
\frac{\partial}{\partial x} f(x, t)=\frac{4 \sqrt{0.5} x \cdot \exp \left[-0.2 \sqrt{0.5\left(x^{2}+y^{2}\right)}\right]}{\sqrt{x^{2}+y^{2}}}+\pi \sin (2 \pi x) \cdot \exp \{0.5[\cos (2 \pi x)+\cos (2 \pi y)]\}
$$

Derivatives

$$
\frac{\partial}{\partial y} f(x, t)=\frac{4 \sqrt{0.5} y \cdot \exp \left[-0.2 \sqrt{0.5\left(x^{2}+y^{2}\right)}\right]}{\sqrt{x^{2}+y^{2}}}+\pi \sin (2 \pi y) \cdot \exp \{0.5[\cos (2 \pi x)+\cos (2 \pi y)]\}
$$

Notebook

Optimization of neural networks: a FNN example

$\boldsymbol{\square} y_{i}=\phi_{i}\left(\sum_{j=1}^{n^{i}} w_{j}^{i} z_{j}^{i}+b^{i}\right)$, where ϕ_{i} is the activation function, z^{i} is the input, w^{i} is the weight and b^{i} is the bias
■ Previous FNN can be seen as a function $\hat{\mathbf{y}}=f(\mathbf{x}, \mathbf{w})$, where $\mathbf{x}=\left\langle x_{1}, x_{2}, \ldots, x_{p}\right\rangle, \mathbf{w}=\left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle$

Components of an FNN optimization

■ Architecture

■ number of layers in the network
\square number of nodes in the hidden layers
■ arrangement of the connections between nodes

Activation function

Learning environment
■ supervised learning, reinforcement learning, ...

■ Learning algorithm

■ Weights: $\mathbf{w}=\left\langle w_{1}, w_{2}, \ldots, w_{n}\right\rangle$

In many cases (especially in our field) it is the only component which is optimised

Optimization of weights

■ In a supervised learning, we want to minimise the difference/distance between the desired output \mathbf{y} and the model's output $\hat{\mathbf{y}}=f(\mathbf{x}, \mathbf{w})$ measured by a cost function:

$$
c_{f}: Y \times \hat{Y} \longrightarrow \mathbb{R}_{\geq 0}
$$

$\begin{aligned} & \text { Popular choices: mean squared error (regression) } \\ & \text { accuracy and misclassification rate (classification) }\end{aligned} \longrightarrow c_{f}\left(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{q}\left(y_{i j}-\hat{y}_{i j}\right)^{2}$

Learning algorithm: Backpropagation

Delta rule: $\mathbf{w}^{t+1}=\mathbf{w}^{t}+\Delta \mathbf{w}^{t}$
$\Delta \mathbf{w}_{l}^{t}=\alpha^{t} \mathbf{w}_{l}^{t-1}+\eta^{t} \cdot \frac{\partial c_{f}}{\partial \mathbf{w}^{t}} \mathbf{y}_{l-1}$

■ Learning algorithm: Metaheuristic
\mathbf{w}^{t} : known values (at $\left.t\right)$ with minimum $c_{f}\left(\mathbf{y}_{i}, \hat{\mathbf{y}}_{i}\right)$

EvoMiP

■ EvoMiP is a Python library, based on the package for \mathbf{R} called EmiR (from the same authors)

```
It includes some of the most popular population- based metaheuristic algorithms:
■ Artificial Bee Colony algorithm (ABC)
- Bat algorithm (BAT)
- Cuckoo Search (CS)
- Genetic Algorithms (GA)
- Gravitational Search Algorithm (GSA)
- Grey Wolf Optimization (GWO)
- Harmony Search (HS)
- Improved Harmony Search (IHS)
■ Moth-flame Optimization (MFO)
■ Particle Swarm optimization (PS)
- Simulated Annealing (SA)
- Whale Optimization Algorithm (WOA)
```

SoftwareX 18 (2022) 101083

	Contents lists available at ScienceDirect	3 ${ }^{3}$ SOFWARE
	SoftwareX	
ELSEVIER	journal homepage: www.elsevier.com/locate/softx	

Original software publication
EmiR: Evolutionary minimization for R
Davide Pagano ${ }^{*}$, Lorenzo Sostero
Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy

ARticle info
Article history:
Article history:
Received 21 Ianuary 2022
Received in revised form 22 March 2022 Accepted 5 April 2022

Keywords:

Keywords:
Evolutionary algorithms
Optimization

ABSTRACT
Classical minimization methods, like the steepest descent or quasi-Newton techniques, have been proved to struggle in dealing with optimization problems with a high-dimensional search space or subject to complex nonlinear constraints. In the last decade, the interest on metaheuristic natureinspired algorithms has been growing steadily, due to their flexibility and effectiveness. In this paper we present EmiR, a package for R which implements several metaheuristic algorithms for optimizatio also for problems subjected to inequality constraints and for integer or mixed-integer problems. Main features of EmiR, its usage and the comparison with other available tools are presented. © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

Yet another library?

■ EvoMiP, just like EmiR, offers an efficient implementation of provided algorithms

■ It can be used not only for unconstrained problems but also problems subjected to inequality constraints

■ It can also be used for integer and mixed-integer problems

Notebook

An "easy" example...

- Assume you want to train an ANN to generate three integer numbers a, b, c such as:

■ $a \geq 0$

- $b \leq 0$
- $c=0$

■ One possible approach could be to use a GAN

We need to generate a sample of "good" (a, b, c) vectors
■ This approach is usually slow

■ Actually, we don't need the discriminator as long as we can use a proper loss function...

■...but it won't work with gradient-based approaches...

```
def objective_function(self, opt_par):
    self.update_model_with_parameters(opt_par)
    sum = 0.
    y_pred = self.model.predict(self.latent_points)
    for i in range(0, len(y_pred)):
    a = int(y_pred[i,0])
    b}=\operatorname{int}(y_pred[i,1]
        c = int(y_pred[i, 2])
        if (a<0):
            sum += abs(a)
        if (b > 0):
        sum += b
        sum += abs(c)
    return sum
```

Notebook

