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Introduction

pp — e e jj

Events collisions at the LHC are characterized via their features:

O Global features:

Kinematics of the hard process as masses, momenta, helicity correlations, etc,
encode the global features for the final state particles. Together with the
kinematics for the resonantly mediated particles, global features span the

entire phase space.

O Local features:

Local features are extracted from the properties of the particles confined by

the jet boundaries, e.g. momentum of jet constituents, pseudo rapidity of the
Simulated with Delphes Event display

jet constituents, etc. This information doesn 't span the entire phase space and

localized inside the jet boundaries



Introduction

For Event classification one can use:

O Kinematics:

High-level reconstructed kinematics of the hard process

can be used to Classify signal from background events

O Jet sub-structure:

Multi-prong structure of jets can be used for classification.

The 3 prong structure of the top jet can be used to
distinguish events with top jet from QCD jet processes
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Infroduction

Arxiv:2305.13781
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The concatenated features is then analyzed with one
fully connected layer before the output layer. Local E> ML network E>
features >



Introduction

For a simple concatenation the global information encoded by the high level
kinematics dominates over the local information. Thus, no much improvement
from incorporating the jet information!!
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In this paper, the authors used CNN to extract the
information from the QCD and MLP to analyze the high level MENN MIEN
reconstructed kinematics. The output is then concatenated a(z)

in a single layer, Z.

For simple concatenation the model totally ignores the
extracted information form the QCD and focuses only

2 () @ indicates the important information the model | | , |
On the global information extracted from the kinematics

focuses on fo make predictions



Transformer Encoders

An alternative way is to use Multi-scale transformer.

But first lets see how the transformer works.

Attention is all you need
A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, AN Gomez, £ Kaiser, | Polosukhin
Advances in neural information processing systems, 2017 - proceedings.neurips.cc
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Self Attention Attention(Q, K, V) = softmax( QK~ )\

This matrix contains how important
n each element in the original input fo the whole
elements in the input data

o Self Attention:

self-attention allows each element in the sequence to
attend to all other elements, capturing both local and
global dependencies. This is achieved through the
calculation of attention scores, which are used fto linearly
combine the values associated with different positions.

Self attention output has the same
dimension as the input
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https://arxiv.org/abs/2010.11929

Transformer for particle physics

O Cross Attention:

1- Assign the weight matrices

iIX7  xviXT tasd X nxij _ aonxXm yy/MmX]J nxi1  onxXm yysmXJ , 1X 7 nxXm
Q = X" WQ , K J =385 - W K Vil =S ' """fv For two input data sets X' , S

2- Attention output

Q"z.x] . (K*-nx]>T

iXG e | | nXxy
zZ — softmax \m 4 Input and output have the same dimensions

5- Concatenate all heads

X ] 1X ] ~1X) 1X ] . , , ,
O'J = concat (Zl J : Z.f) J... Zn J Normalizing matrix to preserve the dimension

4- Skip connection

XX = X' 4 @9'%] Output has the same dimension of the Input X

Global features Jet Constitutions Global features

| One output that encodes the important
~information extracted from the global and local information
l Of the event

Particles
[ )
Local features
Particles




Transformer for particle physics

| | Cross Atftention
Simple concatenation

with two different scales
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Physics Example
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Jet contents are shifted shifted such that the jet axis in the center
O Rotation:
Rotate the jet contents in the eta-phi plane such that the jet axis is vertical O O
O Flipping: _ 9
Jet contents are reflected over the vertical axis such that the right side contains the MLP
hard radiations
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Leading Sub-leading Kinematics

Background consists of 90% of QCD and 10% of ttbar Jot Jot



R esu I TS ATLAS results are taken from ArxiV:2202.07288
and linearly scaled to 3000 1/fb infegrated luminosity

ROCs for signal point with mH =1 TeV
HL-LHC, £ = 3000 fb~!
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Four models are considerea: For high mass range, the kinematics of the signal

O Transformer encoder with self attention trained on jets information only dominates with no much improvement of the machine
learning over the basic cuts. For lower mass our network
Is 10 times befter than ATLAS analysis.

O Transformer encoder with self attention trained on kinematics only

OTransformer encoder with self attention trained on jets information + kinematics . . . .
The bands due to repeating the experiment 5 times with

O Transformer encoder with cross attention trained on jets information + kinematics  different train and test spli#ing,



Well, good results! What is next ?

Interpretability

But why do we need interpretation methods?



Interpretability

Transformer lay
(MHCA)

Add() Layer

Transformer layers
(MHSA)

Input=

Transformer layers
(MHSA)

Input=(£2, E

J

What we present

2

Transformer layers

How the model actually
looks like

It is dangerous to deal with
this complex structure as
a black box
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Atfention Maps

The analysis of the attention maps highlight the particle tokens that
receive higher attention scores, indicating their significance in
the model’s decision. Also, it reveals how particle tokens relate to each other.
It highlights the information extracted from the jet constitutes
that are relevant to the reconstructed objects.

o Self Attention:

Jet Jet

Features Constitutions Constitutions

.ﬂ‘

Jet
itutions

Const

— SoftMax

Jet
Constitutions
@

Features

-
-
??

We use 5 self-attention heads for the first transformer encoder.
Particles are sorted according to their pt, with zero pixel indicates the
highest momentum particle.

Attention maps of test 120K samples.

Self Attention head-1 Self Attention head-2 Self Attention head-3
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Atfention Maps

O Cross Attention:
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Attention maps of test 120K samples.
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The leading constituents of the signal jets show i
High attention score to the reconstructed
heavy Higgs. While background jets constituents
exhibits flat attention fo the heavy Higgs
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Grad-Cam

Gad-Cam works as the following:

O After training split the model from the last convolution layer.
O Compute the output of the last convolution layer (A)
O Compute the gradient of the class score of the second half of the model

O Compute the average of the gradients with resect to the spatial coordinates

1 0
W=7 2 @/;j,-j
J

.

[/

O Compute the weighted sum of the feature maps output (A)

Grad-Cam = ReLLU E ' AF
k

O The resulting heatmap indicates the spatial region in which the model focuses for predictions

Gradient weighted Class Activation Mapping (Grad-Cam) has been first
Introduced in CNN model to visualize the most important pixels the
model consider for his predictions.

Arxiv:1610.02391

Image Classification
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(a) Original Image (¢) Grad-CAM ‘Cat’ (1) Grad-CAM ‘Dog’



Grad-Cam

Results for 5000 test images of the last self attention layer of the
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To visualize the region in the features space the model consider to
Classify the inputs as signal or background like, we use Grad-Cam
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Grad-Cam shows that the network focuses on the two prong
structure to predict the input as signal like, while it focuses on
the radiation pattern of to predict the input as background like

The asymmetric pattern due to the flipping transformation
In which all hard radiation are in the positive eta range



Our code

Our code is made for public with no hard coding

sig_dir =
bkg_dir =
outdir =

https://github.com/AHamamd150/Multi-Scale-Transformer-encoder

num_classes=

batch_size=

epoch =

mlp_units = [128, 64]

masked =

###H##H#Loss functions and optimizer###H#HH#H#

loss_func = keras losses CategoricalCrossentropy() Only one txt file to control the network structure

optimizer = tf keras.optimizers.legacy.Adam(learning rate= )
train_accuracy = tf.keras.metrics.CategoricalAccuracy()
test_accuracy = tf.keras.metrics.CategoricalAccuracy()
USRS 1 #

## paremters of the first transformer#

HHHHHHHHH S HHHH SSRGS R R R4
num_heads_1 =

num_transformers_ 1=

n_constit 1 =

n_channels_1 =

input_shape_part_1 = (n_constit_1,n_channels_1) Run the code via the terminal command:
mlp_head _units_1 = [64,n_channels 1]

HHHHHHHH S HHHH SSRGS S 1 H#
## paremters of the second transformer#

HHAHHAHHAAHHHAHHAHHA A HHAHH RS H A HHAHHAHHH
num_heads_2 =

python3 run.py input.pyl

num_transformers_ 2=

n_constit 2 =

n_channels 2 =

input_shape_part_2 = (n_constit_2,n_channels_2)
mlp_head_units_2 = [64,n_channels_2]
HUHHAHRGHAHHGHAHHAH A HAH A HAH RS HAHHEHEH
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