
Quantum Machine Learning in HEP with Qibo

PyHEP 2024

Matteo Robbiati† on behalf of the Qibo team‡

3 July 2023

† PhD candidate, University of Milan, Italy and CERN, Switzerland.

R matteo.robbiati@cern.ch

‡https : //qibo.science/

1

https://qibo.science/

Quantum Computing for HEP

2

Quantum Computing in a nutshell

A quite general “why?”

Why Quantum
Computing?

Theoretical
advantage

Represent quantum
systems

Break computational
complexity barriers

Potential
advantage

Process "quantum"
data

Quantum Machine
Learning

Energy efficiency

3

Gate based quantum computing

1. classical bits are replaced by qubits |ψ〉 = α |0〉+ β |1〉 (quantum states).

2. we can manipulate the qubit state applying gates: |ψ′〉 = U(θ) |ψ〉 .
Typically we use 1-qubit and 2-qubits gates!

3. combine together gates to build quantum circuits;

4. to access the information we need to measure the system.

4

Gate based quantum computing

1. classical bits are replaced by qubits |ψ〉 = α |0〉+ β |1〉 (quantum states).

2. we can manipulate the qubit state applying gates: |ψ′〉 = U(θ) |ψ〉 .
Typically we use 1-qubit and 2-qubits gates!

3. combine together gates to build quantum circuits;

4. to access the information we need to measure the system.

4

Gate based quantum computing

1. classical bits are replaced by qubits |ψ〉 = α |0〉+ β |1〉 (quantum states).

2. we can manipulate the qubit state applying gates: |ψ′〉 = U(θ) |ψ〉 .
Typically we use 1-qubit and 2-qubits gates!

3. combine together gates to build quantum circuits;

4. to access the information we need to measure the system.

4

Gate based quantum computing

1. classical bits are replaced by qubits |ψ〉 = α |0〉+ β |1〉 (quantum states).

2. we can manipulate the qubit state applying gates: |ψ′〉 = U(θ) |ψ〉 .
Typically we use 1-qubit and 2-qubits gates!

3. combine together gates to build quantum circuits;

4. to access the information we need to measure the system.

4

& Example 1: preparing entangled states

With quantum computing, we introduce new tools.

÷ prepare a quantum state in the computational zero |0〉;
D we can prepare superposition:

H |0〉 =
1
√

2
(|0〉+ |1〉) with H =

1
√

2

[
1 1

1 −1

]
, |0〉 =

[
1

0

]
, |1〉 =

[
0

1

]
;

 let’s apply a controlled-NOT (CNOT) gate on a second qubit prepared in |0〉:

CNOT

(
1
√

2
(|0〉+ |1〉)︸ ︷︷ ︸
control

⊗ |0〉
)

=
1
√

2
(|00〉+ NOTtarg |10〉) =

1
√

2
(|00〉+ |11〉).

|0〉 H

|0〉

00 11

States

0

100

200

300

400

500

#

State visualization

5

& Example 1: preparing entangled states

With quantum computing, we introduce new tools.

÷ prepare a quantum state in the computational zero |0〉;
D we can prepare superposition:

H |0〉 =
1
√

2
(|0〉+ |1〉) with H =

1
√

2

[
1 1

1 −1

]
, |0〉 =

[
1

0

]
, |1〉 =

[
0

1

]
;

 let’s apply a controlled-NOT (CNOT) gate on a second qubit prepared in |0〉:

CNOT

(
1
√

2
(|0〉+ |1〉)︸ ︷︷ ︸
control

⊗ |0〉
)

=
1
√

2
(|00〉+ NOTtarg |10〉) =

1
√

2
(|00〉+ |11〉).

|0〉 H

|0〉

00 11

States

0

100

200

300

400

500

#

State visualization

5

Parametric gates prepare variational quantum states

 Among the gates, parametric ones can be useful!

Æ Let’s consider a single qubit system:

|ψ〉 = α |0〉+ β |1〉 with α = cos
θ

2
, β = e iφ sin

θ

2
.

z

x

y

|ψ〉

φ

ξ

z

x

y

|ψ〉

|ψ′〉

U(θ)

We can use as parametric gates the rotation around the axis of the block sphere:

Rk (θ) = exp
[
−iθσk

]
, with σk ∈ {I , σx , σy , σz}.

6

Parametric quantum circuits

Parametric gates can be used to build parametric quantum circuits.

7

Qibo 0.2.9

What is needed for doing quantum computing?

QC model

Simulate algorithms

Exact results

We can simulate only a
few qubits

Execution on
quantum hardware

Noisy results

Long execution times

Limited resources

Qibo

LHC data

8

The Qibo ecosystem � arXiv:2009.01845

Qibo is an open-source hybrid quantum operating system for self-hosted quantum computers.

1. Fully open-source and community driven.

2. Modular layout design with possibility of

adding:

- new backends for simulation,

- new platforms for hardware control,

- new drivers for control electronics.

3. Supported by documentation and tests/CI

on quantum hardware.

https://qibo.science

9

https://arxiv.org/abs/2009.01845
https://qibo.science

The Qibo timeline

10

An open source and full-stack framework for QC � arXiv:2308.06313

Qibo
Implementation

Language API

Quantum annealing

Quantum computing

Quantum information

Simulation
backends

Qibojit Efficient thanks to
custom operators

Numpy
Lightweight, fits
any CPU

Clifford
Specialized in
Clifford circuits

TensorFlow

Pytorch

Qibotn TensorNetwork
simulator

Hybrid QML with
automatic
differentiation

Cloud
backends

IBM

QRC-TII

Hardware
backend

Qibolab

Control drivers

Convert gates to pulses

Compiler

Applications

Qiboml

Qibochem

Qibosoq

Qibocal

Characterization

Validation

Verification

 RFSoCs

� https://github.com/qiboteam
11

https://arxiv.org/abs/2308.06313
https://github.com/qiboteam

A focus on classical simulation performances � arXiv:2203.08826

State vector simulation solves:

ψ′(σ1, . . . , σn) =
∑
τ ′

G(τ , τ ′)ψ(σ1, . . . , τ
′, . . . , σn)

The number of operations scales exponentially with the number of qubits.

Qibo uses just-in-time technology and hardware acceleration:

Qibojit

CPU

Custom operations

using Numba

NumPy tensors

GPU(s)

CuPy tensors

Custom operations using

CuPy JIT

NVIDIA cuQuantum

Specialized operators

for 1 and 2 qubits gates

exploiting sparsity.

In-place updates.

12

https://arxiv.org/abs/2203.08826

A focus on classical simulation performances � arXiv:2203.08826

Through its modularity, Qibo allows execution of the same high level language onto different classical hardware

accellerators.

5 10 15 20 25 30 35
Number of qubits

100

101

102

103

104

To
tal

 si
m

ul
ati

on
 ti

m
e (

se
c)

qibojit, qft, double precision
NVIDIA RTX A6000 (cupy)
NVIDIA DGX V100 (cupy)
NVIDIA GTX 1650 (cupy)
AMD Radeon VII (cupy)
NVIDIA RTX A6000 (cupy-multigpu)
AMD EPYC 7742, 128 th., 2TB (numba)
ATOS QLM, 384 th., 6TB (numba)

qft variational supremacy qv bv

101

102

To
tal

 d
ry

 ti
m

e (
se

c)

30 qubits - single precision
Qibo
Qibo GPU
Qiskit
Qiskit GPU
HybridQ
HybridQ GPU
QCGPU

qft variational supremacy qv bv
101

102

To
tal

 d
ry

 ti
m

e (
se

c)

30 qubits - double precision
Qibo
Qibo GPU
Qiskit
Qiskit GPU
HybridQ
HybridQ GPU
Qulacs
Qulacs GPU
ProjectQ

We reach satisfying performances thanks to custom operators and in-place updates of the statevector.

13

https://arxiv.org/abs/2203.08826

Quantum Machine Learning

Classical Machine Learning

I asked ChatGPT to give me a comprehensive diagram of Machine Learning (ML) models.

Focusing on the supervised ML:

we aim to know some hidden law between two variables: y = f (x)

we define a parameteric model which returns yest = fest(x ;θ)

we define an optimizer, which task is to compute argminθ

[
J(ymeas, yest)

]
14

Classical Machine Learning

I asked ChatGPT to give me a comprehensive diagram of Machine Learning (ML) models.

Focusing on the supervised ML!

û we aim to know some hidden law between two variables: y = f (x);

ÿ we define a parameteric model which returns yest = fest(x ;θ);

I we define an optimizer, which task is to compute argminθ

[
J(ymeas, yest)

]
.

15

Classical Machine Learning

16

Quantum Machine Learning

Machine Learning

M: model;

O: optimizer;

J : loss function.

(x , y): data

Quantum Computation

Q: qubits;

S: superposition;

E: entanglement.

Circuit execution

Expected values

yest ≡ 〈qf |Ô|qf 〉

17

Quantum Machine Learning

Machine Learning

M: model;

O: optimizer;

J : loss function.

(x , y): data

Quantum Computation

Q: qubits;

S: superposition;

E: entanglement.

Circuit execution

Expected values

yest ≡ 〈qf |Ô|qf 〉

18

Quantum Machine Learning!

Machine Learning

M: model;

O: optimizer;

J : loss function.

(x , y): data

Quantum Computation

Q: qubits;

S: superposition;

E: entanglement.

Optimizer O
Hybrid-strategy

Circuit execution

Expected values

yest ≡ 〈qf |Ô|qf 〉

loss function J
J (ymeas , yest)

19

From ML to QML

20

& Example 2: PDF fit � arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1. Define a quantum circuit:

U(θ, x)|0〉⊗n = |ψ(θ, x)〉

2. Uw (α, x) = Rz (α3 log(x)+α4)Ry (α1 log(x)+α2)

3. Using zi (θ, x) = 〈ψ(θ, x)|Zi |ψ(θ, x)〉:

qPDFi (x,Q0, θ) =
1− zi (θ, x)

1 + zi (θ, x)
.

U l(θl, γl, x)

U(θl,0, x) • Rz(γl,7)

U(θl,1, x) Rz(γl,0) •

U(θl,2, x) • Rz(γl,4)

U(θl,3, x) Rz(γl,1) •

= U(θl,4, x) • Rz(γl,5)

U(θl,5, x) Rz(γl,2) •

U(θl,6, x) • Rz(γl,6)

U(θl,7, x) Rz(γl,3) •

1
Results from classical quantum simulation and hardware execution (IBM) are promising:

21

https://arxiv.org/abs/2011.13934

PDF fit on chip � arXiv:2308.06313

High level API: Qibo

/ define prototypes and models;

/ simulate training and noise.

Calibration: Qibocal

û calibrate qubits;

û generate platform configuration;

Execution: Qibolab

2 allocate calibrated platform;

2 compile and transpile circuits;

2 execute and return results.

10 4 10 3 10 2 10 1 100

x

0.0

0.2

0.4

0.6

0.8

u
f(x

)

u-quark PDF fit on the qubit

Target function
Predictions
2 belt
1 belt

Parameter Value

Ndata 50

Nshots 500

MSE ∼ 10−3

Electronics Xilinx ZCU216

Training time ∼ 2h

22

https://arxiv.org/abs/2308.06313

Some applications

- Multi-variable integration using the qPDF ansatz, � arXiv:2303.11346;

- Real-time quantum error mitigation on superconducting devices to improve trainability, � arXiv:2303.11346;

0.210

0.220

0.230

I u
(Q

2)

Estimates of Iu(Q2)

0 2500 5000 7500 10000 12500 15000
Q2 (GeV2)

0.990
1.000
1.010

Ra
tio

Approximation
Target result

10 4 10 3 10 2 10 1 100

x

0.0

0.2

0.4

0.6

0.8

1.0

uf
(x

)

u-quark PDF predictions on hardware

Predictions with CDR training
Predictions with raw training
Target
Qubit's assignment fidelity

23

https://arxiv.org/abs/2303.11346
https://arxiv.org/abs/2303.11346

	Quantum Computing in a nutshell
	Qibo 0.2.9
	Quantum Machine Learning

