Quantum Machine Learning in HEP with Qibo

PyHEP 2024

Matteo Robbiati[†] on behalf of the Qibo team[‡] 3 July 2023

[†] PhD candidate, University of Milan, Italy and CERN, Switzerland. matteo.robbiati@cern.ch

[‡] https : // gibo.science /

Quantum Computing for HEP

High Energy Physics

Quantum Computing in a nutshell

1. classical bits are replaced by **qubits** $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ (quantum states).

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

Silicon quantum dots

These "artificial atoms" are Qu made by adding an electron to the a small piece of pure silicon. cha Microwaves control the cor electron's quantum state. br

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

A nitrogen atom and a vacancy add an electron to a diamond lattice. Its quantum spin state, along with those of nearby carbon nuclei, can be controlled with light.

- 1. classical bits are replaced by **qubits** $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ (quantum states).
- 2. we can manipulate the qubit state applying gates: $|\psi'\rangle = U(\theta) |\psi\rangle$. Typically we use 1-qubit and 2-qubits gates!

- 1. classical bits are replaced by **qubits** $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ (quantum states).
- 2. we can manipulate the qubit state applying gates: $|\psi'\rangle = U(\theta) |\psi\rangle$. Typically we use 1-qubit and 2-qubits gates!
- 3. combine together gates to build quantum circuits;

- 1. classical bits are replaced by **qubits** $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ (quantum states).
- 2. we can manipulate the qubit state applying gates: $|\psi'\rangle = \mathcal{U}(\theta) |\psi\rangle$. Typically we use 1-qubit and 2-qubits gates!
- 3. combine together gates to build quantum circuits;
- 4. to access the information we need to measure the system.

>_ Example 1: preparing entangled states

With quantum computing, we introduce new tools.

✓ prepare a quantum state in the computational zero |0⟩;
⇒ we can prepare superposition:

$$H \ket{0} = rac{1}{\sqrt{2}} (\ket{0} + \ket{1}) \quad ext{with} \quad H = rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \ \ket{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \ket{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix};$$

 \triangleleft let's apply a controlled-NOT (CNOT) gate on a second qubit prepared in $|0\rangle$:

$$\mathsf{CNOT}\left(\underbrace{\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)}_{\text{control}} \otimes |0\rangle\right) = \frac{1}{\sqrt{2}}(|00\rangle + \mathsf{NOT}_{\mathrm{targ}} |10\rangle) = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle).$$

>_ Example 1: preparing entangled states

With quantum computing, we introduce new tools.

✓ prepare a quantum state in the computational zero |0⟩;
⇒ we can prepare superposition:

$$H \ket{0} = rac{1}{\sqrt{2}} (\ket{0} + \ket{1}) \quad ext{with} \quad H = rac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \ \ket{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \ket{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix};$$

 \triangleleft let's apply a controlled-NOT (CNOT) gate on a second qubit prepared in $|0\rangle$:

$$\mathsf{CNOT}\left(\underbrace{\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)}_{\text{control}}\otimes|0\rangle\right) = \frac{1}{\sqrt{2}}(|00\rangle+\mathsf{NOT}_{\mathrm{targ}}|10\rangle) = \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle).$$

Parametric gates prepare variational quantum states

Among the gates, parametric ones can be useful!

Let's consider a single qubit system:

We can use as parametric gates the rotation around the axis of the block sphere:

 $R_k(\theta) = \exp[-i\theta\sigma_k], \quad \text{with} \quad \sigma_k \in \{I, \sigma_x, \sigma_y, \sigma_z\}.$

Parametric gates can be used to build parametric quantum circuits.

Qibo 0.2.9

Qibo is an open-source hybrid quantum operating system for self-hosted quantum computers.

- 1. Fully open-source and community driven.
- 2. Modular layout design with possibility of adding:
 - new backends for simulation,
 - new platforms for hardware control,
 - new drivers for control electronics.
- Supported by documentation and tests/CI on quantum hardware.

A focus on classical simulation performances

State vector simulation solves:

$$\psi'(\sigma_1,\ldots,\sigma_n) = \sum_{\boldsymbol{\tau}'} G(\boldsymbol{\tau},\boldsymbol{\tau}')\psi(\sigma_1,\ldots,\boldsymbol{\tau}',\ldots,\sigma_n)$$

The number of operations scales exponentially with the number of qubits.

Qibo uses just-in-time technology and hardware acceleration:

Through its modularity, Qibo allows execution of the same high level language onto different classical hardware accellerators.

We reach satisfying performances thanks to custom operators and in-place updates of the statevector.

Quantum Machine Learning

I asked ChatGPT to give me a comprehensive diagram of Machine Learning (ML) models.

I asked ChatGPT to give me a comprehensive diagram of Machine Learning (ML) models.

Focusing on the supervised ML!

 \diamond we aim to know some hidden law between two variables: $\mathbf{y} = f(\mathbf{x})$; \mathbf{u} we define a parameteric model which returns $\mathbf{y}_{est} = f_{est}(\mathbf{x}; \theta)$; \mathbf{m} we define an optimizer, which task is to compute $\operatorname{argmin}_{\theta} [J(\mathbf{y}_{meas}, \mathbf{y}_{est})]$.

Quantum Machine Learning!

arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1. Define a quantum circuit: $\mathcal{U}(\theta, x)|0\rangle^{\otimes n} = |\psi(\theta, x)\rangle$ 2. $U_w(\alpha, x) = R_z(\alpha_3 \log(x) + \alpha_4)R_y(\alpha_1 \log(x) + \alpha_2)$ 3. Using $z_i(\theta, x) = \langle \psi(\theta, x)|Z_i|\psi(\theta, x)\rangle$: $qPDF_i(x, Q_0, \theta) = \frac{1 - z_i(\theta, x)}{1 + z_i(\theta, x)}.$

Results from classical quantum simulation and hardware execution (IBM) are promising:

arXiv:2308.06313

Some applications

- Multi-variable integration using the qPDF ansatz, **a** arXiv:2303.11346;
- Real-time quantum error mitigation on superconducting devices to improve trainability, **J** arXiv:2303.11346;

