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Quantum Computing in a nutshell
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Gate based quantum computing

1. classical bits are replaced by qubits |i)) = «|0) + 8|1) (quantum states).
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Gate based quantum computing

1. classical bits are replaced by qubits |i)) = «|0) + 8|1) (quantum states).

2. we can manipulate the qubit state applying gates: |[¢') = U(0) |¢) .
Typically we use 1-qubit and 2-qubits gates!

3. combine together gates to build quantum circuits;
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Gate based quantum computing

1. classical bits are replaced by qubits |i)) = «|0) + 3|1) (quantum states).

2. we can manipulate the qubit state applying gates: |[¢') = U(0) |¢) .
Typically we use 1-qubit and 2-qubits gates!

3. combine together gates to build quantum circuits;

4. to access the information we need to measure the system.
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>_ Example 1: preparing entangled states

With quantum computing, we introduce new tools.

o prepare a quantum state in the computational zero |0);
3= we can prepare superposition:

1 1 |1 1 1 0
H|0) = —(|0 1 ith H=— 0) = , 1) = ;
0) = 5000 +11) wi ﬁ[l 1],> M,I) M
&% let's apply a controlled-NOT (CNOT) gate on a second qubit prepared in |0):

eNOT (=10} + 1)) ©10) ) = =(100) + NOTuarg [10)) = (100} + [11)).
| —

control



>_ Example 1: preparing entangled states

With quantum computing, we introduce new tools.

o prepare a quantum state in the computational zero |0);
3= we can prepare superposition:

1 1 |1 1 1 0
H0) = —(|0 1 ith H=— 0) = , 1) = ;
0= 7500 +[1) wi ﬁ[l 1],> M,n H
&% let's apply a controlled-NOT (CNOT) gate on a second qubit prepared in |0):
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Parametric gates prepare variational quantum states

@ Among the gates, parametric ones can be useful!
@ Let's consider a single qubit system:

W) = alo) +8]1)  with

We can use as parametric gates the rotation around the axis of the block sphere:

Ri(0) = exp[—i@ak], with ok € {l,ox,0y,0:}.



Parametric quantum circuits

Parametric gates can be used to build parametric quantum circuits.
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What is needed for doing quantum computing?
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The Qibo ecosystem & arXiv:2009.018

Qibo is an open-source hybrid quantum operating system for self-hosted quantum computers.
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Qibo: an open-source
middleware for quantum

1. Fully open-source and community driven. __ computing

2. Modular layout design with possibility of
adding:

- new backends for simulation,

An open-source quantum

- new platforms for hardware control, . Goosystem
- new drivers for control electronics.

3. Supported by documentation and tests/Cl https://qibo.science

on quantum hardware.
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An open source and full-stack framework for QC

& arXiv:2308.06313

Simulation

leO backends

Implementation
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Numpy cPy
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A focus on classical simulation performances & arXiv:2203.08

State vector simulation solves:
1/1/(017 ] Un) = Z G(T7 T/)w(alv MR Tl) M) Un)
.’./

The number of operations scales exponentially with the number of qubits.

Qibo uses just-in-time technology and hardware acceleration:
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https://arxiv.org/abs/2203.08826

A focus on classical simulation performances & arXiv:2203.08826

Through its modularity, Qibo allows execution of the same high level language onto different classical hardware
accellerators.
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We reach satisfying performances thanks to custom operators and in-place updates of the statevector.
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Quantum Machine Learning




Classical Machine Learning

| asked ChatGPT to give me a comprehensive diagram of Machine Learning (ML) models.

Gradient Boosting Polynomial Regression
Linear Regression
AdaBoost
Decision Trees
Boosting Regression
Support Vector Machines
Classification
(et (R — Ensemble Methods Supervised Learning
Random Forest
Semi-supervised Learning Neural Networks
Label Propagation Transfer Learning Unsupervised Learning
K-Means
Deep Learning Clustering.
Fine-tuning a pretrained
el
o Dimensionality Reduction
RNNs. HCA
CNNs
Kernel PCA
PCA



Classical Machine Learning

| asked ChatGPT to give me a comprehensive diagram of Machine Learning (ML) models.
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Focusing on the supervised ML!

€ we aim to know some hidden law between two variables: y = f(x);
[l we define a parameteric model which returns yest = fest(x; 0);
A we define an optimizer, which task is to compute argming [J(¥meas, Yest)] -
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Quantum Machine Learning

M: model,

O: optimizer;
J: loss function.
(x,y): data

Machine Learning ]

Expected values
vest = (qr|Olar)

Quantum Computation
Q: qubits;

S: superposition;

&: entanglement.

Circuit execution
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Quantum Machine Learning

chine Learning
model:;
~ optimizer;

J: loss function.
(Xmata

Quantum Computation
Q: qubits;

S: superposition;

&: entanglement.

Expected values
Yest = (qr|Olqr)

Circuit execution
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Quantum Machine Learning!

[ Optimizer O

Hybrid-strategy ] \

Machine Learning loss function J

M: model; T (Vmeas, Yest)

O: optimizer;

J: loss function.

(x,y): data Expected values
Yest = (ar| Olar)

Quantum Computation
Q: qubits;

S: superposition;
E: entanglement.

Circuit execution
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From ML to QML

Optimizer updates ‘\
parameters
Until convergence
R.(0) [ Ryfe) [ Reloe) [— - —]
R.(6) ] Ry(2) [ R=(65) — ~ — i

R.(63) F{ R-(64) M Ry(e) [ " ] /A Evaluate Loss function

0
%
& —

Data

N

999

20



>_ Example 2: PDF fit & arXiv:2011.13934

We parametrize Parton Distribution Functions with multi-qubit variational quantum circuits:

1. Define a quantum circuit:
U(0,x)[0)<" = (6, x)) b I

2. Uy(a, x) = Rz(a3log(x)+as)Ry (o log(x)+ar2)

3. Using z(0, x) = (¢(0, x)| Zi|4(0, x)): |

1— z(0,x)

aPDF(x, Qo, 0) = T52(0,%)
1 )

Results from classical quantum simulation and hardware execution (IBM) are promising:
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https://arxiv.org/abs/2011.13934

PDF fit on chip

High level API: Qibo

u-quark PDF fit on the qubit
0.8
0.6
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https://arxiv.org/abs/2308.06313

Some applications

- Multi-variable integration using the qPDF ansatz, & arXiv:2303.11346;

- Real-time quantum error mitigation on superconducting devices to improve trainability, & arXiv:2303.11346;
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Estimates of /,(Q2)

Approximation 1.0 1 LN
0.230 4 —-=-=- Target result
°
- 0.220 1
S =
L =
EY— 5
0.210
1.0104 0.2 { —— Predictions with CDR training
'r% 1.000 A —— Predictions with raw training
o ] == Target
p 0.0
0.990 —— Qubit's assignment fidelity
0 2500 5000 7500 10000 12500 15000 10'—4 10'-3 10'-2 10'-1 1(')D
Q2 (GeV?) X

23


https://arxiv.org/abs/2303.11346
https://arxiv.org/abs/2303.11346

	Quantum Computing in a nutshell
	Qibo 0.2.9
	Quantum Machine Learning

