

Quarkonium polarization measurements Challenges and opportunities PLB 840 (2023) 137871

Ilse Krätschmer in collaboration with Pietro Faccioli and Carlos Lourenço

22. May 2024

Institute of Science and

protonproton collision QQ

created

Quarkonium polarization

- Directly reflects mixture of pre-resonance configurations
- Is measured through the angular decay distribution wrt a quantization axis z

$$\begin{aligned} \frac{dN}{d\cos\vartheta d\varphi} \propto 1 + \lambda_{\vartheta}\cos^{2}\vartheta \\ &+ \lambda_{\varphi}\sin^{2}\vartheta\cos2\varphi \\ &+ \lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi \end{aligned}$$

Center-of-mass helicity HX: $z_{HX} \approx direction of constraints of the constraints of the$

Collins-Soper CS: $z_{CS} \approx$ direction of relative velocity of colliding particles

Reference frames: quarkonium momentum one beam or the target

independent quantity $\tilde{\lambda} = (\lambda_{\vartheta} + 3\lambda_{\varphi})/(1 - \lambda_{\varphi})$

The shape of the distribution is invariant and can be characterized by the frame-

Indications from existing measurements

- 1. Hierarchy in λ_{θ} and λ_{φ} parameters: CS - GJ - HX
- CS axis more naturally reflects the alignment of the J/ψ angular momentum
- Quarkonium production is dominated by 2-to-1 processes, where the produced state is strongly polarized:
 - $gg \rightarrow Q$ fully longitudinally polarized
 - $q\bar{q} \rightarrow Q$ fully transversely polarized

for directly produced quarkonia along the natural polarization axis (PRD 83 (2011) 056008)

Indications from existing measurements

- 2. Decreasing magnitude of polarization with increasing p_T
- Nonzero transverse momentum distribution of colliding partons has an effect for light quarkonia at low p_T and small x_F

Indications from existing measurements

- 3. More longitudinal J/ ψ polarization at small x_F
- Relative dominance of gg fusion compared to qq annihilation at x_F close to 0

qq/gg ratios pp and p-nucleus collisions

- qq and gg parton densities computed as the product of the corresponding PDFs using CT14NLO from LHAPDF and EPPS16
- Minimum of ratio around $x_F = 0$

R

- Nuclear effects are negligible
- qq annihilation is more important for heavier quarkonia

Empirical model Assumptions

- Observed polarization of directly produced quarkonia results from the interplay between qq
 annihilation and gg fusion processes.
- Observable mixture of longitudinal (from gg) and transverse (from $q\bar{q}$) polarizations is fully determined by the product of two ratios:
 - 1. ratio between qq and gg parton densities, R
 - 2. ratio between qq and gg partonic cross sections, r
- Natural polarization parameter in parton-parton CS frame

$$\lambda = \frac{f_{q\overline{q}} \,\lambda^{q\overline{q}} / (3 + \lambda_{\vartheta}^{q\overline{q}})}{f_{q\overline{q}} / (3 + \lambda_{\vartheta}^{q\overline{q}})}$$

 $f_{q\overline{q}} = R \times r/(1 + R \times r)$

 $\frac{\bar{a}}{\bar{a}} + \frac{f_{gg} \lambda^{gg}}{(3 + \lambda_{\vartheta}^{gg})} + \frac{f_{gg}}{(3 + \lambda_{\vartheta}^{gg})}$

according to sum rule in EPJC 69 (2010) 657

 $f_{gg} = 1/(1 + R \times r)$

Feed-down from heavier quarkonium states

- S-wave states have the same polarization: $\psi(2S) \rightarrow J/\psi\pi\pi$ (PRD 62 (2000) 032002)
- P-wave states have different production mechanism due to emission of a transversely polarized gluon (PRD 83 (2011) 096001)
- Weaker polarization due to mixture from feed-down
- Total feed-down fraction from χ_c : 19% from HERAb (PRD 79 (2009) 012001)

		$\lambda^{\chi_1}_{artheta}$	$\lambda_{artheta}^{\chi_2}$
central, C	gg	+1	-3/5
	q q	-1/3	-1/3
lower, L	gg, q q	-1/3	-3/5
upper, U	gg, q q	+1	+1

Results p-nucleus collisions

r = ratio between $q\bar{q}$ and ggpartonic cross section

qq/ggratio pion-nucleus collisions

- Significant differences for various pion PDFs because of poorly known gluon densities
- Negligible differences between positive and negative pions
- Nuclear effects have minor impact on x_F dependence

PLB 840 (2023) 137871

Predictions

Apparatus for Meson and Baryon Experimental Research

Conclusions and summary

- Our simple model assumes that observed polarization results from the interplay between $q\bar{q}$ annihilation and gg fusion.
- Future polarization measurements in proton-nucleus collisions can test our model.
- The polarization observable has the potential to provide a strong constraint on the pion PDFs.
- $\psi(2S)$ polarization measurements are particularly interesting since there is no feed-down.

Further reading: "Particle Polarization in High Energy Physics" https://link.springer.com/book/10.1007/978-3-031-08876-6

Indications from existing measurements

- 2. More longitudinal J/ ψ polarization at small x_F
- Relative dominance of gluongluon fusion at mid-rapidity, qq annihilation is more relevant in more forward region

 λ_{ϑ}

 λ_{v}

Constraints

