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Introduction: Particle Production

1 Particle production in cosmology is sourced by an expanding space-time geometry.
The dynamics of this process is similar to the following notable examples.

2 Schwinger pair production: (1951) e+e− pairs produced under strong a electric
field -‘conducting vacuum’.

3 Hawking radiation: (1974) particle anti-particle pairs created near the horizon
can extract energy from the black hole and radiate real particles outside the horizon
-‘black holes evaporate’.

4 Particle production during the expansion of the universe may even explain the dark
matter abundance today.[rf. D.J.H.Chung -1998]
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Preview

Analogous to the anomalous current being sourced by topology i.e.

∂µJ
µ ∼ cF F̃

particle production can be understood as the current associated with particle
number being sourced by the topology of asymptotic expansions.
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Particle Production

Particle Production

1 Interested in particle production due to breaking of time translation invariance.

2 Consider a scalar field in flat space-time coupled to a time dependent background field

S =

∫
d4x

(
∂µχ∂

µχ+ gϕ2(t)χ2
)

with ds2 = −dt2 + dx2

3 Quantizing on the background

χ̂ =

∫
d3k

[
akχk(t)e

ik.x + a†kχ
∗
k(t)e

−ikx
]

where ∂2t χk+
[
k2 + gϕ2(t)

]
χk = 0 &B.C

To every χk(t) corresponds to a notion of vacuum defined as ak |0⟩ = 0.

4 Define a measure for breaking of time translational invariance

ϵ(t) =
∂tω(t)

ω2(t)
=

ϕ(t)∂tϕ(t)

(k2 + gϕ2(t))3/2
where ω2(t) = k2 + gϕ2(t).
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Particle Production

χ(t) = d
3 k bk χk

(2) ei k.x + bk
† χ*(2) e-ikxχ(t) = d

3 k ak χk
(1) ei k.x + ak

† χ*(1) e-ikx

χk
(1) t ∼ (2ω)-1/2 exp -i 

t
ω

as t → -∞

χk
(2) t ∼ (2ω)-1/2 exp -i 

t
ω

as t → +∞
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1 Since χ
(1)
k , χ

(1)∗
k and χ

(2)
k , χ

(2)∗
k are two sets of independent solutions of the mode

equation

χ
(1)
k = αkχ

(2)
k + βkχ

∗(2)
k =⇒ ak = α∗

kbk − βkb
†
k

Nk = ⟨0| N̂k |0⟩ = ⟨0| a†kak |0⟩ = ∥βk∥2
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Bogoliubov Transformation Method

1 Canonical transformation to ‘coefficients of the WKB modes’ Conformal time η

χk(η) = αk(η)f−(η) + βk(η)f+(η); ∂ηχk(η) = i ω(η) [βk(η)f+(η)− αk(η)f−(η)] ;

where f±(η) = (2ω(η))−1/2exp

(
±i

∫ η

η0

dη′ω(η′)

)

2 Mode equation re-written

∂η

αk(η)

βk(η)

 =
ϵ(η)ω(η)

2

 0 e
+2i

∫ η1
η0

ω

e
−2i

∫ η1
η0

ω
0


︸ ︷︷ ︸

M(η)

αk(η)

βk(η)

 ; ϵ(η) =
∂ηω(η)

ω2(η)
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Standard approximation scheme

1 For (α−∞, β−∞) = (1, 0)

α(η) ≈ 1, |β(η)| ≪ 1 =⇒ β+∞ ≈
∫ +∞

−∞
dη̄

ω′

2ω2
e
−2i

∫ η̄
η0

ω

Integral is estimated after contour deformation along steepest descent curves in C.
These pass through stationary points ηs

∂η

[
−2i

∫ η

η0

ω

]
|ηs

= 0 =⇒ ω2(ηs) = 0 Zeroes of ω2(η)

2 Steepest descent approximation only valid for well separated zeroes.

3 S. Enomoto, T. Matsuda (2020) use Stokes phenomenon to compute ∥β+∞∥2 from
global analytic properties of ω2(η) for well separated zeroes.
(rf. N.Froman, O.Fromann - 1965; E.W.Kolb, A.J.Long -2023; S.Hashiba, Y. Yamada -2021)

4 We extend this work using Stokes phenomenon combined with symmetries [rf.
N.Froman and O.Froman] to expose topological nature of the ∥β∥2 in the limit k → 0.
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Stokes Phenomenon

1 Given a Schroedinger-like differential
equation

ψ′′(z) + ω2(z)ψ(z) = 0

express solutions in terms of the WKB
modes

f±(z) =
exp

[
± i

∫ z
0 dz̄ ω(z̄)

]√
2ω(z)

ω2(z) = −z Airy Functions!

π4z

Ai(z) ≈
exp-2 z3/2 3

2√π z1/4

as z→ +∞

Ai(z) ≈
cos2

3
z3/2 - π

4


√π z1/4

as → -∞

-2 -1 0 1 2

-2

-1

0

1

2

Re(z)

Im
(z
)

lim
z→+∞

Ai(z) = 0; lim
z→+∞

Ai′(z) = 0

“Given an exact solution to a complex Schrodinger-like differential equation, it’s WKB
series jumps discretely over boundaries in the complex plane called Stokes lines.”
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1 ψ(z) is given by the asymptotic series

Ai(z) ≈
exp

(
−2z3/2/3

)
2
√
πz1/4

(
1−

u1

z3/2
+
u2

z3
+ ...

)
+ Exp. supp. trms (Region I)

Ai(z) ≈
cos

(
z3/2 − π

4

)
√
πz1/4

(
1−

u2

z3
+ ...

)
+

sin
(
z3/2 − π

4

)
√
πz1/4

(
u1

z3/2
+ ...

)
+ Exp. supp. trms (Region II)

2 The exponentially suppressed terms in Region I(II) grow to become significant in
Region II(I). Transitions ‘almost discontinuously’ - hence ‘jumps’.
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Parametrising these jumps

1 How ‘n’ When? Move across contours
along which

Im

[
i

∫ z

0
ω

]
= 0 ‘Stokes lines’

Transformation

f+ → f+ + Sf−, f− → f− (+ SL)

f− → f− + Sf+, f+ → f+ ( - SL)

2 Into matrices: Transformations of vector
(α, β)T

U1 ≈
[
1 0

S 1

]
; U2 ≈

[
1 S′

0 1

]
; U3 ≈

[
1 S′′

0 1

]

Q: What are the red dashed lines?

f±(z) =
exp∓ 2 z3/2 3

√2 z1/4

-
+

+
U1

U2

U3

-2 -1 0 1 2

-2

-1

0

1

2

Re(z)

Im
(z
)

lim
|z|→∞

exp

[
i

∫ z

0
ω

]
→ ∞ ‘(+) Stokes line’

lim
|z|→∞

exp

[
−i

∫ z

0
ω

]
→ ∞ ‘(-) Stokes line’
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Relation to topology?

1 Symmetries:
For ω2(z) = Azn, mode equation is symmetric

under z → exp
{

2πi
n+2

}
z Zn+2 group

=⇒ UT
+ = U− ≈

[
1 0

Sn 1

]

U− across all (-) SL, U+ across all (+) SL !!

2 Single valuedness:
ψ(z) single valued on C =⇒ (α, β)T transforms
non-trivially across branch cut

=⇒ U1 · U2...Un+2 ·Bn = I2×2

Fixes Sn = 2i cos
(

π
n+2

)

-
+

+
U1

U2

U3

z1

z3

z2B

-2 -1 0 1 2

-2

-1

0

1

2

Re(z)

Im
(z
)

f±(z) =

exp

{
±i 2A

n+2
z

n+2
2

}
√
2A1/4zn/4

F (z) =
(
f+(z), f−(z)

)
F (z exp{2πi}) = F (z) · B−1

n
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Topological!

1 For n ∈ even, ω2(z) ≥ 0 for z ∈ R. Combining connection matrices from R− to R+

β (z+∞) = cot

[
π

n+ 2

]
for boundary condition (α (z−∞) , β (z−∞)) = (1, 0). Topological! Counts the
no.of Stokes lines

2 Suprising? May be re-derived in terms of Wronskian identities of Bessel functions -
the topological nature may be attributed to scale invariance of the Wronskian.
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Extending to realistic dispersion relations

1 More realistic dispersion relation

ψ′′(z) +
(
k̄2 + zn

)
ψ(z) = 0

ω2(z) = k̄2 + zn

2 Symmetry: z → γz, k̄ → γ−1k̄ with

γ = exp
{

2πi
n+2

}
(Zn+2 symmetry)

=⇒ Sj(k̄) = S1(γ
j k̄)

Analyticity: Stokes constants are analytic

functions for k̄
n+2
n

=⇒ S1(k̄) =
∞∑
i=0

ci

(
k̄

n+2
n

)i

+

-
-

-

+

+

Region 1

Region 2

Region n/2 + 1=3

Region n = 4

U1

U2

U6

U4

U3

U5

-6 -4 -2 0 2 4 6

-6

-4

-2

0
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4

6

Re[z]

Im[z]

n = 4
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1 Single valuedness fixes first few coefficients
Q: Why aren’t all coefficients determinable?

For n = 4: S1
(
k̄
)
=i

√
3 +

2Γ2
(

1
4

)
3
√
3π

k̄
3/2

+ ... ci≥2 not determinable

For n = 6: S1
(
k̄
)
=2i cos

(
π

8

)
−

4
(
1 +

√
2
)√

πΓ
[
7
6

]
sec

(
π
8

)
(
3i(1 +

√
2) +

√
3
(
3 +

√
2
))

Γ
[
5
3

] k̄
4/3

+
2
(
8038 − 5233

√
2 + 16374

√
3i − 4909

√
6i

)
πΓ2

[
7
6

]
147Γ2

[
5
3

] k̄
8/3

+ ...

ci≥3 not determinable

and so on...

2 Corrections define the scale ktopo such that

∥βk∥2 ≈ cot2
[

π

n+ 2

]
∀ k ≲ ktopo
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Model

1 Consider a spectator scalar field ϕ rolling on

V (ϕ) = ρ0 [1− tanh (ϕ/M)]

coupled to dark matter field χ as

L ⊃
g

2Λ2
ϕ4χ2

ϕi

ϕe

ϕ = 0

-2 -1 0 1 2 3

0

5

10

15

20

ϕ

V
(ϕ

)

2 Field starts rolling from ϕi. At the end of inflation ϕ = ϕe lies in linear region of
potential.

3 Dispersion relation of χ-modes near non-adiabatic point ϕ(η0) = 0

ω2(η) = k2 +
g

Λ2
a2(η)ϕ4(η) ≈ k2 +

g

Λ2
a2(η0)

(
ϕ′(η0)

)4
(η − η0)

4

4 Parameters in the model

ρ̄ =
ρ0

H2
IM

2
≈ 10−6, ḡ =

gM4

Λ2H2
I

≈ 10−2

Sudhir, Nidhi (UW-M) GPP using Stokes phenomenon May 4, 2024 15 / 19



Intro: Particle Prod Comp β Stokes Phen Topology Finite k Physical scenario Summary Appendices

1 Number density of dark matter particles nχ may be estimated as

nχ =

∫
d3k

(2π)3
|βk|2 ∼ fk3cutoff , with kcutoff ≈ aeHI

(
ḡ1/4|c2|

) 2
3
; f ∼ O(1)

2 The topological contribution is similarly

nχ,topo =

∫ kcut,topo d3k

(2π)3
|βk|2

where kcut,topo is the smaller of
i) scale of validity of approximation

kapprox ∼ O(10−4) kcutoff

ii) topological scale inherent to ω̄2 = k̄2 + z4

ktopo ∼ O(10−1) kcuttoff

=⇒ nχ,topo ≪ nχ
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Summary

1 Analogous to ∂µJµ ∼ cF F̃ , particle production may be understood as the current
associated with particle number being sourced by the topology of the asymptotic
expansion.

2 The topological nature of β also a consequence of the scale invariance of the Bessel
function Wronskian.

3 Topology determines the first few corrections to the β coefficient in small k.

4 Physical models where the above analysis can be applied involve dispersion relations
which pass through a zero on the real line.

Thank you!
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Appendix 1:

Asymptotic Series

Consider two functions f(x) and g(x) = f(x) + e
− 1

x2 . Since the Taylor series as x→ +∞ of
the exponential term is

lim
x→∞

e
− 1

x2 = 0 + 0.x−1 + 0.
x−2

2
+ ...

the functions f(x) and g(x) has the exact same asymptotic series.
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Wronskian scale invariance

ν =
1

n+ 2
and ξ =

n+ 2

2

β = zW

[
J−ν

(
zξ

ξ

)
, Jν

(
zξ

ξ

)]
=

2ξ sin (πν)

π

W

[
J−ν

(
zξ

ξ

)
, Jν

(
zξ

ξ

)]
= J−ν

(
zξ

ξ

)
∂zJ+ν

(
zξ

ξ

)
−J+ν

(
zξ

ξ

)
∂zJ−ν

(
zξ

ξ

)
=

2ξ sin (πν)

πz

dW

dz
=

−1

z
W (1)
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