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CMB Acoustic Peaks

* Radiation pressure in photon-baryon plasma leads to propagation of sound

waves before recombination.

* This gets imprinted as peak structure in CMB power spectrum. Phase shift in

acoustic oscillations manifest as “shift” in CMB peaks

 Phenomenology: what kind of physics can produce phase shift?
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CMB Phase Shift

* CMB phase shift is sensitive to propagation behaviour of non-photon radiation (e.g. SM
neutrinos, light dark photon...) before recombination!

* Non-photon radiation exerts “gravitational drag” on photon-baryon waves: sensitive to
physics that interact only gravitationally with us (no new direct interaction with SM)

e Studied before in the context of free-streaming vs self-interacting radiation
(Bashinsky & Seljak arXiv:astro-ph/0310198 , Baumann et. al. arXiv:1508.06342v3)
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https://arxiv.org/abs/1508.06342

Dark Matter-Radiation
nteractions

* Phase shift effect can be
amplified compared to self-
interacting radiation scenario

* Slow radiation propagation
further by scattering with a
portion of dark matter

* Consider multi-component dark
matter and radiation sectors

 Demonstrative example: let
(massless) neutrinos play role
of interacting radiation first

Example DNI Model:

E

l

[

X X X X
(Scalar DM) (Fermionic DM)
J— _.‘_ R
/ \ 0
1
JU T o ’y.ij’y
L D H'l;) = il where 1n;; = —=—.
( ) (45 x) Nij ¢JX Mij V2
/ fv.- fDR \
1 N :
Interacting ; Interacting
Dark Matter }\< ST l/>/{ Neutrinos/DR]
Cold Dark Free-streaming
Matter Neutrinos
Baryons < Scattering >\{ Photons ]
4




Dark Matter Loading 0 o0

* Efficient scattering: scattering rate large > DR o op
’ v,
compared to Hubble rate

Sound Speeds of Tightly Coupled Radiation Fluid

* |nteracting radiation (r) and matter (m) forms
tightly-coupled fluid, with sound speed
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Amplitying CMB Phase Shift

e Use CLASS to calculate shift in CMB peaks with respect to ACDM model (all neutrinos FS)

* Peaks shift to positive [ for Sl neutrino. Shift is enhanced further for DL neutrino (f)( = 2.5%)

* Enhancement of DL vs Sl has linear dependence on f,, independent of f, (for small £, )
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Brief Outline

 Numerical calculations (CLASS) show CMB phase shift amplified by
dark matter loading

* Let’s go further:

1. Understand mechanism behind the effect with a simplistic toy model
2. Study observability of the effect by considering a more realistic model
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Toy Model: Coupled Oscillators

Gravitational Coupling
1. Two tightly-coupled fluids: photon- o 2 2¢
baryon and neutrino-DM, described by 5’1” +k CT‘S’T _ F(T)(f’}’a’l’ T fV5V)

radiation energy density constrast 9, 51,, 4 k%iéy — F(T)(f,.}f&f -+ flﬁ,,)

2. Fluids carry acoustic oscillations
suppressed by matter-loading, interact 5
with each other only gravitationally ~y (Visible) 51; (Tidde”)

3. Phase shift imprinted in photons by 2 Gravitational L
hidden oscillator; size and direction of Cry “Coupling Cy

shift depends on relative sound speed 1l +
y < 2 —
F (T) ~H* ~ 9 <_
4. Gravitational interaction strength L
decreases over time with Hubble:
phase shift gets “fixed”




Toy Model Approximates CLASS Well

* Numerical check: toy model captures phase shift in photon transfer function from CLASS

* Level of agreement preserved when only 1 or 2 neutrinos interact while the rest free-stream
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Simple Parametric Dependence 5 5y

) Gravitational .
~ Coupling
<

ke, ke,

6y + k*c28, = F(1)(f,0, + f.0.)

i
C:'_"--\_

5 + k2c28, = F(7)(f,0, + f,6,) -
(i) Small coupling: homogeneous solutions (ii) Small matter-loading: small deviation
d ~ cos(cykT) cy—cC, =0c <K 1
§, ~ cos(c k) dc~ Ry, ~ fy/ [y

Phase shift A¢p gets imprinted in homogeneous photon oscillations by (perturbative)
gravitational influence of neutrinos

0 ~ cos(c kT — Ag)



Simple Parametric Dependence 5 5y

_Gravitat.ional A
5, + k228, = F(r)(fy0, + f,6,) Q .

o, + k225, = F(7)(f,6, + £.0,)

ke, kc,

<

Gravitational

/ “driving force”

fycos(cykT) + f, cos((cy — dc)kT) ~ cos(c kT) + fidcsin(c kT)

———

Phase shift to 6, ~ COS(kCyT) comes from sine part, which is linear in f, and
independent of f,,

_

_ A¢ relative shift w.r.t.

Ix
A¢ ~ foc~ f, (Z -~ fX self-interacting case
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Interacting Dark Radiation Model

* Additional dark radiation component (AN, r) scatters efficiently with DM

e All neutrinos free-streaming with new physics only in dark sector: interacts with
Standard Model only gravitationally

* Similar phase shift amplification and parametric dependence (e.g. AN,¢s = 0.4)
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Angular Sound Horizon 6,

 CMB peak positions well measured (e.g. Planck2018)

 Degeneracy in parameters: how far away is the CMB
(2D surface of last scattering)?

* Determine phase shift A¢p from fitting 6, (7;: sound
horizon, D4: angular diameter distance)
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MCMC Analysis: Signature in 6,

* Use Montepython to fit model. Allow
amount of interacting DR (Npy) to vary

* DM-loading signature: angular sound
horizon 6, positively correlated with
interacting DM fraction f,

* For comparison, the Npr = 0 case
corresponds to ACDM

* The f,, = 0 limit for Npp > 0 cases
corresponds to self-interacting DR
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MCMC Analysis: Signature in 6,

* Use Montepython to fit model. Allow
amount of interacting DR (Npy) to vary

* DM-loading signature: angular sound
horizon 6, positively correlated with
interacting DM fraction f,

* For comparison, the Npr = 0 case
corresponds to ACDM

* The f,, = 0 limit for Npp > 0 cases
corresponds to self-interacting DR

Datasets: Planck2018 + BAO + SHOES + kv450
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MCMC Analysis: Dual signature in og

* 0g parameter measures amplitude DR-DM (Planck + BAO + Ext)
of matter density fluctuations on |
scales k ~ 8 h/Mpc 0.84

* From mater POV, scattering with
radiation interferes with clumping/ .
structure formation o 0.82

* Dual signature: og suppression
appears alongside 65 enhancement 0.80 -
with increasing f,

I I
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Energy Density

Conclusion

1.

CMB phase shift provides sensitive gravitational probe of propagation behaviour of
non-photon radiation before recombination. (Useful for probing radiation with no
direct interaction with SM.)

Radiation propagation slowed further (compared to self-interacting case) by scattering
with dark matter. Generates amplified phase shift in CMB.

i. Effect can be understood using simple coupled oscillator picture

ii. Effectis observable by looking for 68, enhancement (dual signal in ag suppresion)
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More on the DNI Model

YijV

L D %(H W) (ix) = migvitix, where

Temperature independent cross-section when DM and mediator mass difference much
smaller than neutrino temperature

n 4 2 ‘
o=1.7x10"" (i) (Gev) GeV 2
0.1 My

Possible UV completion with massive vector-like fermion N

11 Y: /.1 Y_r
L D }/N,iszi(HTﬁj) + Y:ﬂr,ijN,;:(dij) + f\sz,fnggN;, where yf ~ 2 \.]\if N.kj
: J:I\r




CLASS 1 and 2 nu
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Toy Model: Coupled Oscillators 5 5,

5o P 47_[2 N . Gravitational X
0 (7) + kzci(T)(sv(T) = ) (E(TT)) (f505(7) + fuou(T)) , Ky (\ j Coupling
+ K " (:'::f;___}
. o AH2(T <
0,(T) + k2c2(1)6, (1) = o (E (T)) (fy04(7) + £0u(T)) . = =~

* Two tightly-coupled fluids interacting only
gravitationally; gravitational interaction weakens 5 1 _ 3pm

. . . Cr = ) -
over time with Hubble expansion " 3(1+Ry) " 4py
(forr =y orv)

* Each fluid has natural frequency set by sound speed;

matter-loading effect drives sound speeds apart Toy Model Assumptions
1. No free-streaming radiation
* Phase shift in photon oscillator due to gravitational 2. Small matter-loading
influence of hidden oscillator. Direction of shift 3. Sub-horizon (simplified horizon-entry)
depends on relative sound speed 4. Radiation dominated perturbations




Toy Model fy-dependence at z = 10800 (kpeak = 0.43/Mpc)

Toy Model Analysis

=
o

£
* Analyse toy model for parametric dependences in L
radiation era, assuming small difference in photon 5
and neutrino sound speeds (and other simplifying :
assumptions) £
<
* Consider phase shift induced in photon oscillations | | | = sveomere

3
f, (IDM Ratio %)

due to gravitational driving from neutrinos
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Ak w.r.t. Sl-v Fluid [10~5/Mpc]

Toy Model vs CLASS (3 neutrinos
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Toy Model vs CLASS (1 neutrino
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Ak w.r.t. Sl-v Fluid [1073/Mpc]

Toy Model vs CLASS (2 neutrinos

Shift in 6,(k)? Peaks for 2 v Scattering at z=10800
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MCMC: Proof-of-Principle

* Consider case where all neutrinos scatter efficiently first to isolate f,-dependence of
observables due to DM-loading

* Look at correlations of 8, (CMB phase shift) and ag (matter power spectrum)
parameters with DL parameter f,

s vs fy (Planck + BAO) og vs fy (Planck + BAO)
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MCMC Analysis: Sighature in 8 (Planck+BAQO)

* Planck and BAO datasets. DM-loading apparent only when amount of DR
is significant

* When DR negligible, f, becomes unconstrained (does nothing)

DR-DM (Planck + BAO) Npr > 0.1 (Planck + BAO)
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