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Nonperturbative QFT effects

Expand around vacuum, calculate e.g. ⟨ψout S ψin⟩

Most of our time spent understanding perturbative QFT effects, sensibly 

All great. But quantum field theory 
is richer than perturbation theory!

very ‘far away’ 
in field space



Topology in field theory

Often there are ‘topological quantum 
numbers’ that classify field space

Local vacuum solutions 
 can have defects; 

domain walls separate different regions
ϕ(x) : ℝ4 → ℳvac

ϕ

V(ϕ)

Domain wall 

Interpolating ϕ = ϕ+ϕ = ϕ−

ϕ+ϕ−

Vacuum configurations

A -symmetric scalar breaking , 
distinct vacua 

ℤ2 ℤ2 → ∅
π0(ℳvac) = ℤ2



Higher-dimensional topology

 can have winding 
number which leads to cosmic strings 
Φ(x) : ℝ4 → ℳvac

Vacuum configurations
V(Φ)

How can we tell what sorts of physics effects these objects can lead to?

A -symmetric scalar breaking , 
, 

U(1) U(1) → ∅
π0(ℳvac) = 1 π1(ℳvac) = U(1)

B-L strings for the 
lithium problem 

2204.01750



Generalized Global Symmetries

Usually look at Lagrangian data and consider transforming local operators 

 ψa(x) → Ra
bψ

b(x)

But what about these extended operators 
associated to this nonperturbative, topological 
data in our theory?

GGS Framework 
Gaiotto, Kapustin, 

Seiberg, Willett 
1412.5148 

Symmetries are important! 



Higher-form symmetries

0-form symmetry 
charged local 
operators  
e.g. particles 

1-form  
line operators  
e.g. Wilson line 

2-form  
surface operators  
e.g. cosmic string

3-form  
volume operators  
e.g. domain wall

𝜕𝜇𝐽𝜇 = 0 𝜕𝜇𝐽𝜇𝜈 = 0 Generally  antisymmetric𝜕𝜇𝐽𝜇1𝜇2…𝜇𝑝+1 = 0



Higher-form symmetries

0-form symmetry 
charged local 
operators  
e.g. particles 

1-form  
line operators  
e.g. Wilson line 

2-form  
surface operators  
e.g. cosmic string

3-form  
volume operators  
e.g. domain wall

𝜕𝜇𝐽𝜇 = 0 𝜕𝜇𝐽𝜇𝜈 = 0 Generally  antisymmetric𝜕𝜇𝐽𝜇1𝜇2…𝜇𝑝+1 = 0

Break by adding charged operator 
to Lagrangian e.g. δℒ = MNN

Break only with the appearance of new dynamical 
degrees of freedom!



Generalized Global Symmetry of Electromagnetism

Recall Gauss’ law: The Gaussian surface is topological and so computes an invariant charge.

Qenclosed = ∫Σ2

⃗E ⋅ d ⃗A

t = 0



Generalized Global Symmetry of Electromagnetism

Recall Gauss’ law: The Gaussian surface is topological and so computes an invariant charge.

Qenclosed = ∫Σ2

⃗E ⋅ d ⃗A Qenclosed = ∫Σ2

FμνdSρσϵμνρσ

In pure electromagnetism, the photon field strength is conserved  

Gauss’ law computes a Noether charge for an electric 1-form symmetry!

Jμν
E ∼

1
e2

Fμν, ∂μJμν
E = 0

t = 0



Emergent 1-form symmetry

That is, Gauss’ law really breaks for  because the 
Gaussian surface is no longer topological. 

E > me

The 1-form symmetry is emergent in the low-energy, long-distance theory .E ≪ me

Once we see the dynamical 
electron, then Wilson lines can ‘end’.



Emergent 1-form symmetry

That is, Gauss’ law really breaks for  because the 
Gaussian surface is no longer topological. 

E > me

The 1-form symmetry is emergent in the low-energy, long-distance theory .E ≪ me

Once we see the dynamical 
electron, then Wilson lines can ‘end’.

Mutatis mutandis a magnetic one-form symmetry for a 
theory  with ’t Hooft lines classified by H π1(H)



Instantons and Anomalies
Yang-Mills field configurations can carry topological 
quantum numbers .π3(SU(N)) = ℤ

Sometimes a global symmetry, say , can be good classically but quantum-
mechanically be anomalous  

         

U(1)X

∂μJμ
X = 0 ⟶ ∂μJμ

X =
𝒜

8π2
FμνF̃μν

It’s the instantons which bring this symmetry violation to life 

 = number of times  ‘winds’ around infinity∫ℝ4

FμνF̃μν ∝ ∫∂ℝ4≃S3

̂nμJμ
CS Aμ



Unsaturated Anomalies - Missing Instantons

We said instantons are the field configurations which can saturate the anomaly 

 

But what about when they don’t? 

E.g. famously  and there are no Abelian instantons in , so 

∂μJμ
X =

𝒜
8π2

FμνF̃μν

π3 (U(1)) = 1 ℝ4 ∫ℝ4

FF̃ = 0

Old lesson:  is anomalous but -matrix preserves  anywayX S X



A confused 
effective field 
theorist

EFT philosophy: If there is ever a zero, there should be a symmetry!

Somehow despite  being anomalous there must 
remain a subtle sort of symmetry that demands the 

-matrix preserves 

X

S X

A hint:  can be violated 
around magnetic monopoles 

X

c.f. Callan-Rubakov

Dirac ’31 
Callan, Rubakov ‘80s 

Ongoing…



There’s a subtler notion of symmetry!

Another victory 
for naturalness

 not fully broken, but converted to a 
non-invertible symmetry! This must act 
both on local fields and on ’t Hooft lines.

X

ψ(x) → ψ(x)eiα ei∮γ Am → ei∮γ Am+iα∮γ A

Non-invertible symmetry must break when 
there are dynamical monopoles

Choi, Lam, Shao 
2205.05086   

Córdova, Ohmori 
2205.06243 



Small instanton model building

A(1−inst)
μ (x) ∝

ηaμν(x − x0)νJa

(x − x0)2 + ρ2
When can ultraviolet instantons 
have interesting effects?

-instanton effects suppressed below Higgsing at , and 
-instantons (if any) may not have the same effects 

G v
H

What can we tell about small instantons at low energies? Normally, nothing. Need . E ≳ v

But if the low-energy theory allows -magnetic representations 
, then this information can subtly be preserved

H
π2(G/H) ≃ π1(H) ≠ 1

v

H

G

E ∼ 1/ρ



Model-building logic

v

H

G

E ∼ 1/ρ

A classical global symmetry  protects some 
operator  and has an  anomaly 

X
𝒪 H

∂μJμ
X =

𝒜
8π2

HμνH̃μν

But some values of  not realized for , so  is 

not violated in -matrix of the IR theory and  still protected 

∫ℳ
HH̃ ℳ = ℝ4 X

S 𝒪

Non-invertible  symmetry tells us  could be generated only by 
instantons in the theory  which has -monopoles

X 𝒪
G ⊃ H G/H



Nonperturbative Quantum 
Lepton Flavodynamics

Neutrino Masses from Generalized Symmetry Breaking 
arXiv:2211.07639, Clay Córdova, Sungwoo Hong, SK, Kantaro Ohmori



Beyond with  and !𝑍′ 𝐿𝜇−𝐿𝜏
N

𝑈(1)𝐿𝜇−𝐿𝜏

𝑈(1)𝐿𝜇−𝐿𝜏

≠ 0

Non-invertible symmetry protects neutrino masses 
either with or without right-handed neutrinos

Disallows ( ~𝐻𝐿)
2

Disallows ~𝐻𝐿𝑁



Model-building logic

v

H

G

E ∼ 1/ρ

A classical global symmetry  protects the operators 

  and has an  anomaly 

X = ℤL
3

𝒪ij = (H̃Li)(H̃Lj) H = U(1)Lμ−Lτ

But while  generally,  ∫ℳ
HH̃ ∈ ℤ ∫ℝ4

HH̃ = 0

 is a non-invertible symmetry! In a theory  with 
lepton flavor monopoles,  could be classically absent 

and generated only by -instantons 

X G ⊃ H
𝒪ij

G



Dirac masses: 
 
 

ℒ ∼ yτHLē

Classical  symmetry 
protects the Dirac neutrino 
mass 

U(1)N

H̃LN

Write down charged lepton mass

Now turn on 
quantum mechanics

ℒ ∼ y⋆
τ e

− 8π2
g2
H H̃LN



Nonperturbative Quantum 
Quark Flavodynamics

Non-InverMble Peccei-Quinn Symmetry and the 
Massless Quark SoluMon to the Strong CP Problem 
arXiv:2402.12453, Clay Córdova, Sungwoo Hong, SK



Strong CP Brief Version

The ‘strong CP angle’ is constrained to  !θ̄ ≲ 10−10θ̄ = arg e−iθ det (yuyd)

SM ‘massless up quark solution’: UV PQ symmetry sets , and 
observed up quark mass is totally generated by QCD instantons

yu = 0
Georgi-McArthur ’81  
Kaplan-Manohar ’86 

Choi, Kim, Sze ‘88  

Flavour Lattice 
Averaging Group 2019

Beautiful idea but not realized in nature 
QCD instanton effects not large enough

Could the quark sector tell us about a model where UV instantons 
revive this solution?



Quark Horizontal Symmetry

These non-trivial possibilities modify the 
topological data in a crucial way 

We have the right matter to realize 
 (SU(3)C × SU(3)H)/ℤ3

In the quark sector we can gauge flavor in a slightly more subtle way 
because ! Nc = 3 = Ng



Non-invertible symmetry
When the global structure is non-trivial, there is an interplay between 
the color and flavor anomalies that gives a non-invertible symmetry!

A spurion analysis reveals non-invertible symmetries can protect yd → 0

SU(3)c

SU(3)c

SU(3)H

SU(3)H

Certain ‘fractional 
instantons’ appear as 
a mixture of the two, 
but not on !ℝ4



Model-building logic

v

H

G

E ∼ 1/ρ

A classical global symmetry  protects the 

operators   and has an 

 anomaly 

X = ℤB̃+d
3

𝒪ij = HQid̄j

H = (SU(3)C × SU(3)H)/ℤ3

But while  generally,  ∫ℳ
HH̃ ∈ ℤ/3 ∫ℝ4

HH̃ ∈ ℤ

 is a non-invertible symmetry! In a theory  with 
quark color-flavor monopoles,  could be classically 

absent and generated only by -instantons 

X G ⊃ H
𝒪ij

G



Color-flavor unification!
This all points to a beautiful  unified theory in which the colors 
and flavors of the quarks are placed together into the fundamental

SU(9)

Again start with good  and no strong CP violation, thenU(1)PQ

ℒ0 = ytH̃Qū + h.c. +
iθ9

32π2
FF̃

SU(9)

Q

d̄
ū

Q
H

ℒ(Λ) ∼ ytHQū + y⋆
t eiθ9e− 2π

α9(Λ) HQd̄ +  h.c. +
iθ9

32π2
FF̃



Massless down-type quarks 
solution to strong CP

Natural Dirac 
neutrino masses

Non-invertible symmetry model building

• Top-down: Theories of quantum 
flavodynamics have previously-
unnoticed nonperturbative effects 
with super-cool pheno! 

• Bottom-up: We uncovered these 
using powerful new ideas from 
generalized global symmetries. 

Flavorful quark-lepton unification

SU(3)leptons × SU(9)quarks

U(1)Lμ−Lτ
(SU(3)c × U(1)B1+B2−2B3

)/ℤ3

The Standard Model

Neutrino yukawas as 
‘non-invertible spurions’

Down-type yukawas as 
‘non-invertible spurions’



Backup slides

Rants and other things I didn’t have time for



Wrong conclusion

• Incorrect takeaway: “They used these fancy new symmetry ideas but 
in the end the UV model could be explained in terms of instantons. 
We’ve known about that stuff since the 80s. So who cares about 
generalized symmetries?” 

• Correct takeaway: “These intriguing instanton effects have been sitting 
this close to the SM for decades and nobody saw it?! What can 
generalized symmetries tell me about my favorite BSM model??



Massless quark wins on quality
Both axion and massless quark solutions rely on good quality Peccei-
Quinn symmetries, but only the former has a quality ‘problem’ because 
its required quality is ridiculously unnatural

Worse issue for the axion because  
• With PQ-charged scalar  can have all sorts of PQ-violating ops e.g.  

• We have strong astrophysical bounds on  

• The potential  cannot overpower 

ϕ ℒ ⊃ cnM4−n
Pl ϕn

⟨ϕ⟩ = fa ≳ 108 GeV

Vgrav ∼ f 4
a (fa /Mpl)

n−4
Vinst ∼ Λ4

QCD

Whereas we can sustain some extra additive contribution to  as long 
as its magnitude is small 

 can have some random phase and  coupling as 

long as . Quark flavor physics is not too far away!

M

ℒ ⊃ cΣH̃QΣd̄ /MPl O(1)
⟨Σ⟩/Mpl ≲ θ̄



Quark Weak CP and Strong CP Violation

J̃ = Im det ([y†
uyu, y†

d yd])Even worse, we also have the ‘weak CP angle’

oft parameterized by and the phase mi, θij, δCKM ∼ 1.14

The ‘strong CP angle’ is constrained to  !θ̄ ≲ 10−10

A small value of  is not technically natural  the strong CP problem. 
  
Upon RG evolution,

θ̄ ⇒

θ̄ = arg e−iθ det (yuyd)

δθ̄ ∝ cδCKM Ellis & Gaillard ‘79



Peccei-Quinn for Strong CP

Easier to parameterize in ‘Cartesian coordinates’ 
for complex parameter M ∈ ℂ

Now consider a Peccei-Quinn symmetry protecting the up quark mass

U(1)PQ : ū → ūeiα ⇒ H̃Qū charged so yu = 0

If the PQ symmetry is good, , and so  and there’s no 
strong CP violation

yu → 0 det yu → 0

Def , so  

Transforms as 

M = e−iθ det (yuyd) θ̄ = arg M
CP : Im(M) → − Im(M)



Peccei-Quinn Violation
Massless up quark?! Not in the IR.  
A PQ symmetry which begins good is 
violated by instantons at low energies  is Higgsed at G v

 is asymptotically free, G
α(Λ) → 0 Good   

up to 

U(1)PQ

e− 2π
α(Λ)

E

or  confines at  G ΛQCD

PQ violation 

∝ e− 2π
α(v)

Strongly coupled PQ violation

UV  is then violated by 
QCD instantons to generate 
mass, automatically .

yu = 0

M ∈ ℝ+
Georgi-McArthur ’81  
Kaplan-Manohar ’86 

Choi, Kim, Sze ‘88  

Flavour Lattice 
Averaging Group 2019

Heroic efforts by lattice physicists tell us the SM 
does not bear out the massless up quark solution

Could there be any UV model where instantons revive this solution?



ℒ0 = ytH̃Qū + h.c. +
iθ9

32π2
FF̃

ℒ(Λ) ∼ ytHQū + y⋆
t eiθ9e− 2π

α9(Λ) HQd̄ +  h.c. +
iθ9

32π2
FF̃

We begin in the far UV with a good U(1)PQ

And so of course  
We flow down in energies and begin to generate

M = e−iθ det (yuyd) = 0

𝐸

SU(9)

Λ9

(SU(3)C × SU(3)H)/ℤ3

Λ

With exactly the right phase to ensure  

θ̄ = arg e−iθ9 det yuyd = − θ9 + arg |yt |
2 eiθ9 = 0

Further at the matching scale

ℒ(Λ9) ∼ ytHQū + y⋆
t eiθ9e− 2π

3αs(Λ9) HQd̄ +  h.c. +
i3θ9

32π2 (GG̃ + KK̃)
And the matching accounts for the yukawas now being 3x3 matrices

θ̄ = − 3θ9 + arg det |yt |
2 eiθ9 = 0

Strong CP in more detail



Generating CKM
Idea: Communicating flavor-breaking  through 
gauged flavor symmetry lets you generate 
hermitian yukawas 

 automatically zero

⟨Σa
b⟩

θ̄ = arg det e−iθyuyd

𝐸

SU(9)
Λ9

Λ3

(SU(3)C × SU(3)H)/ℤ3

SU(3)C

Vℤ4
(Σ) = η1Tr (Σ4) + η2Tr (Σ2)2 +  h.c.

(yu)a
b ∼ yt (𝕀a

b +
α9

(4π)
η†

1(Σ†4)a
b + η†

2Tr(Σ†2)(Σ†2)a
b

Λ4
9

+
α9

(4π)
η1(Σ4)a

b + η2Tr(Σ2)(Σ2)a
b

Λ4
9

+ …)



Violation of non-invertible symmetries
The IR generalized symmetry picture is loops of dynamical monopoles which 
break magnetic one-form symmetry so violate non-invertible symmetry

Fan, Fraser, 
Reece, Stout 
2105.09950 

The connection between monopole loops and small instantons is not 
yet well explored

A(n−inst)

∫ E ⋅ B ≠ 0 ≠ ∫ FF̃Dyon loop,  
qe, qm ≠ 0

Some deep 
relation to 

Callan-Rubakov


