Tortured Phenomenology Department

or, why we need quantum computers

Hank Lamm May 4, 2024

Tortured Phenomenology Department

or, why we need quantum computers

Hank Lamm May 4, 2024

Stated succinctly....

Stated succinctly....

Your brain and pencil and paper

Your brain and pencil and paper

Throw it in Mathematica

Your brain and pencil and paper

Throw it in Mathematica

Write some C++ on a workstation

Your brain and pencil and paper

Throw it in Mathematica

Write some C++ on a workstation

Pray to a supercomputer

Your brain and pencil and paper

Throw it in Mathematica

Write some C++ on a workstation

Pray to a supercomputer

But what if your prayers go unanswered?

Computational complexity and Utility

Computational complexity and utility

quantum utility: (noun) when the lazy choice is to use a quantum computer rather than any other option

Quantum Computing for Particle Physics, it's a need

- The world is quantum, and we are lucky anything is amenable to classical computers
 - Large-scale quantum computers can tackle computations in HEP otherwise inaccessible
 - This opens up new frontiers & extends the reach of LHC, LIGO, EIC & DUNE

LO Parton Showers	Scattering Phase Shifts	High Pileu Event Reconstru	o action Phase Transitions	Lattice J Quantum Gravity	let Functions	Ab-initio
E	Low Pileup Event Reconstruction	La Low-dimensional Supers Equation of State	ttice in Early Universe ymmetry	Q Equatio	CD n of State	Hadron-Hadron Scattering
QCD Thermodynamics Low-ly	ning HVP for	Ab-initio Nuclear Physics	Lattice Chiral Gauge Theories	Dynamical Properti Quark Gluon Plas	es of ma	
Hadro Spectros	nic (g-2) _µ scopy	N°LO+ Parton Showers	Neutrinos in Supernova		Generalized Parton Distribu	l tions
Classicall Tractable	y e	Во	oundary Haze			Quantum Advantage

While broad, these topics often are formulated as lattice field theories

Quantum Simulation for High-Energy Physics

Bauer, Davoudi et al. - PRX Quantum 4 (2023) 2, 027001 Wonderful survey of physics questions, methods, and outstanding problems in field

N-point correlators and Quantum Utility

- Nearly all HEP quantum utility is time-evolution + *n* Hermitian insertions $\langle \prod_{i} \mathcal{O}_{i}(t_{i}) \rangle = \int_{\psi(0)}^{\psi(T)} \mathcal{D}\psi \prod_{i} \mathcal{O}_{i}(t_{i}) e^{-iS} = \langle \psi(T) | \prod_{i} \mathcal{O}_{i}(t_{i}) | \psi(0) \rangle$
- Example: Hadronic Tensor

$$\langle P|\chi^{\dagger}(tn^{\mu})\chi(0)|P\rangle = \sum_{i,j,k=\{x,y\}} \frac{c_{ij}}{4} \langle P,a|U_{i,j,k}|P,a\rangle$$

Parton Physics on Quantum Computers Lamm, Lawrence, Yamauchi - *Phys.Rev.Res* 2 (2020) 1, 013272 Formulation HEP problem with potential quantum utility

Where did all the matter come from (aka baryogenesis)?

As a closer target, consider the viscosity of QCD

• $\eta = rac{V}{T} \int_0^\infty \langle T_{12}(t) T_{12}(0)
angle$

Quantum algorithms for transport coefficients in gauge theories NuQS Collaboration - *Phys.Rev.D* 104 (2021) 9, 094514 Formulates lattice operators and propose correlators

- I believe its a "near-term" goal and allows for focus...
- ...while introducing **all** the necessary pieces

Viscosity of pure-glue QCD from the lattice Altenkort et al. - 2211.08230 [hep-lat] State of the art lattice results, but massive uncertainties persist

15

$$\eta/s = 0.15 - 0.48, T = 1.5T_c$$

 $\zeta/s = 0.017 - 0.059, T = 1.5T_c$

It's one calculation, Hank. What could it cost?

Viscosity of SU(3) on 10³ Lattice: 2021: O(10⁶) Iq and O(10⁵⁵) T-gates

Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer Kan and Nam - 2107.12769 [quant-ph]

Rough, conservative, model- and algorithm-dependent estimates for viscosity and heavy-ion collisions

2024: O(10⁴) Iq & O(10¹²) T-gates

Primitive Quantum Gates for an SU(3) Discrete Subgroup: S(108) Gustafson, Ji, Lamm, Murairi, Zhu - *pending on arxiv*

physical qubit: physical system susceptible to noise

logical qubit: collection of physical qubits that encode single qubit of information and allow for error correction

It's one calculation, Hank. What could it cost?

What is **minimal model** for learning new phenomenology?

- Strongly-coupled theories
- Non-equilibrium behavior

What is **minimal model** for learning new phenomenology?

- Strongly-coupled theories
- Non-equilibrium behavior

What can we learn from **lower** dimensions?

• Are there models in the same universality classes of interests

What is **minimal model** for learning new phenomenology?

- Strongly-coupled theories
- Non-equilibrium behavior

What can we learn from **lower** dimensions?

• Are there models in the same universality classes of interests

What can we learn from fewer degrees of freedom, EFTs?

SCET? HQET? χpt?

What is **minimal model** for learning new phenomenology?

- Strongly-coupled theories
- Non-equilibrium behavior

What can we learn from **lower** dimensions?

• Are there models in the same universality classes of interests

What can we learn from fewer degrees of freedom, EFTs?

SCET? HQET? xpt?

What **observables** have really large uncertainties?

Consider things with large, model-dependent systematics

Where did we come from, where will we go?

Today, in 2024: Hundreds of physical qubits, thousands of noisy gates

2024	2025	2026	2027	2028	2029	2033+
Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Platform						
Code assistant 👌	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Transpiler Service 🧕	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
Transpiler Service 🧿	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
Transpiler Service 🕉 Heron (5K) 🏾 🏵	Resource Management Flamingo (5K)	Circuit Knitting x P Flamingo (7.5K)	Intelligent Orchestration	Flamingo (15K)	Starling (100M)	Circuit libraries Blue Jay (1B)
Transpiler Service 🧿 Heron (5K) 🥹 Error Mitigation	Resource Management Flamingo (5K) Error Mitigation	Circuit Knitting x P Flamingo (7.5K) Error Mitigation	Intelligent Orchestration Flamingo (10K) Error Mitigation	Flamingo (15K) Error Mitigation	Starling (100M) Error correction	Circuit libraries Blue Jay (1B) Error correction
Transpiler Service (2) Heron (5K) (2) Error Mitigation 5k gates 133 qubits	Resource Management Flamingo (5K) Error Mitigation 5k gates 156 qubits	Circuit Knitting x P Flamingto (7.5K) Error Mitigation 7.5k gates 156 qubits	Intelligent Orchestration Flamingo (10K) Error Mitgation 10k gates 156 qubits	Flamingo (15K) Error Mitigation 15k gates 156 qubits	Starling (100M) Error correction 100M gates 200 qubits	Circuit libraries Blue Jay (1B) Fror correction 18 gates 2000 qubts
Transpiller Service Image: Constraint of the service Heron (5K) Image: Constraint of the service Froror Mitigation Sk gates 133 qubits Classical modular	Resource Management Flamingo (5K) Error Mitgation 5k gates 156 qubits Quantum modular	Circuit Knitting x P Flamingo (7.5K) Error Mitgation 7.5k gates 156 qubits Quantum modular	Intelligent Orchestration Flarningo (10K) Error Mitgation 10k gates 156 qubits Quantum modular	Flamingo (15K) Fror Milgation 15k gabits Quantum modular	Starling (100M) Error correction 100M gates 200 qubits Error corrected modularity	Circuit libraries Blue Jay (1B) Error correction 18 gates 2000 qubits Error corrected modularits
Transpiler Service (2) Heron (5K) (2) Error Mrigation 5k gates 133 qubits Classical modular 133x3 = 399 qubits	Resource Management Flamingo (5K) Error Mitgation 5k gases 156 qubits Quantum modular 156v7 = 1092 qubits	Circuit Knitting x P Flamingo (7.5K) Error Milgation 7.5k gatas 156 qubits Quantum modular 156x7 = 1092 qubits	Intelligent Orchestration Flamingo (10K) Error Mitgation 10k gates 156 qubits Quantum modular 156x7 = 1092 qubits	Flamingo (15K) Error Mitgation 15% gabts 156 gabts Quantum modular 156x7 = 1092 gubts	Starling (100M) Error correction 100M gates 200 qubits Error corrected modularity	Circuit libraries Blue Jay (1B) Error correction 18 gates 2000 qubits Error corrected modularity

Where did we come from, where will we go?

Today, in 2024: Hundreds of physical qubits, thousands of noisy gates

....squinting at the roadmaps...

2027-2029: Tens of logical qubits with few logical gates

2024	2025	2026	2027	2028	2029	2033+
Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Platform						
Code assistant 🥹	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Transpiler Service 🥹	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
						-
Heron (5K) Error Mitigation 5k gates 133 qubits Classical modular	Flamingo (5K) Error Mitigation 5k gates 156 qubits Quantum modular	Flamingo (7.5K) Error Mitigation 7.5k gates 156 qubits Quantum modular	Flamingo (10K) Error Mitigation 10k gates 156 qubits Quantum modular	Flamingo (15K) Error Mitigation 15k gates 156 qubits Quantum modular	Starling (100M) Error correction 100M gates 200 qubits Error corrected	Blue Jay (1B) Error correction 1B gates 2000 qubits Error corrected

Where did we come from, where will we go?

Today, in 2024: Hundreds of physical qubits, thousands of noisy gates

....squinting at the roadmaps...

2027-2029: Tens of logical qubits with few logical gates

...balancing on broken branches...

2030-2040: Fault-tolerant computers with ~1000 gubits

2024	2025	2026	2027	2028	2029	2033+
Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Platform						
Code assistant 🛛 🕲	Functions	Mapping Collection	Specific Libraries			General purpose QC libraries
Transpiler Service 🔞	Resource Management	Circuit Knitting x P	Intelligent Orchestration			Circuit libraries
		e to				
Heron (5K) 🥹	Flamingo (5K)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)		
Error Mitigation	Error Mitigation	Error Mitigation	Error Mitigation	Error Mitigation	Error correction	Error correction
5k gates 133 oubits	5k gates 156 gubits	7.5k gates 156 gubits	10k gates 156 oubits	15k gates 156 cubits	100M gates 200 cubits	1B gates 2000 qubits
Classical modular	Quantum modular	Quantum modular	Quantum modular	Quantum modular	Error corrected	Error corrected
133x3 = 399 qubits	156x7 = 1092 qubits	156x7 = 1092 qubits	156x7 = 1092 qubits	156x7 = 1092 qubits	modularity	modularity

 $\langle \psi_0 | e^{-iHt} {\cal O} e^{iHt} | \psi_0
angle$

• Formulate the theory

 $\langle \psi_0 | e^{-iHt} {\cal O} e^{iHt} | \psi_0
angle$

- Formulate the theory
- Prepare a state

 $\langle \psi_0 | e^{-iHt} \mathcal{O} e^{iHt} | \psi_0
angle$

- Formulate the theory
- Prepare a state
- Time evolve the state

 $\langle \psi_0 | e^{-iHt} {\cal O} e^{iHt} | \psi_0
angle$

- Formulate the theory
- Prepare a state
- Time evolve the state
- Perform a measurement

What is a gluon?

or, digitize infinite Hilbert spaces

Mapping infinite bosonic fields to finite quantum register

• Y'all are spoiled by classical computers

$$U(1) o e^{ilpha} \quad SU(2) o egin{pmatrix} a & b \ c & d \end{pmatrix} \quad SU(3) o egin{pmatrix} a & b \ d & e \ h & i \end{pmatrix}$$

С

Mapping infinite bosonic fields to finite quantum register

• Y'all are spoiled by classical computers

$$U(1) o e^{ilpha} \qquad SU(2) o egin{pmatrix} a & b \ c & d \end{pmatrix}$$

- On classical computers, these correspond to expensive floating-point registers
- Typically high connectivity between states e.g

Qu8its for Quantum Simulations of Lattice Quantum Chromodynamics Illa, Robin, Savage - 2403.14537 Explore the utility of quoctit for quantum simulations of the dynamics of 1+1D LQCD

$$SU(3)
ightarrow egin{pmatrix} a & b & c \ d & e & f \ h & i & j \end{pmatrix}$$

How to choose a side?

$$H_{KS,1} = \sum_{i= ext{color}} E_{1,i}^2(n) + \sum_{k= ext{direction}} \operatorname{ReTr} U_1 U_2 U_3^\dagger U_4^\dagger$$

E (irreducible representation) basis

Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis Ciavarella, Klco, Savage *Phys.Rev.D* 103 (2021) 9, 094501 Qubit implementation of SU(3) with irrep truncations

Mixed basis

A new basis for Hamiltonian SU(2) simulations Bauer, D'Andrea, Freytsis, Grabowska - 2307.11829 Formulated an alternative basis that contains parts of E & B basis **B** (group element) basis

Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT Gustafson, Lamm, Lovelace, Musk - *Phys.Rev.D* 106 (2022) 11, 114501 Qubit and Qudit gates for approximating SU(2) with subgroups

How to choose a side?

E (irreducible representation) basis

Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis Ciavarella, KIco, Savage *Phys.Rev.D* 103 (2021) 9, 094501 Qubit implementation of SU(3) with irrep truncations

Mixed basis

A new basis for Hamiltonian SU(2) simulations Bauer, D'Andrea, Freytsis, Grabowska - 2307.11829 Formulated an alternative basis that contains parts of E & B basis **B** (group element) basis

Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT Gustafson, Lamm, Lovelace, Musk - *Phys.Rev.D* 106 (2022) 11, 114501 Qubit and Qudit gates for approximating SU(2) with subgroups

Well, what keeps you up at night?

arbitrary precision, gauge fixing, quantum noise, error correction, gate costs, classical simulatability

How to choose a side?

$$H_{KS,1} = \sum_{i= ext{color}} E_{1,i}^2(n) + \sum_{k= ext{direction}} \operatorname{ReTr} U_1 U_2 U_3^\dagger U_4^\dagger$$

E (irreducible representation) basis

Trailhead for quantum simulation of SU(3) Yang-Mills lattice gauge theory in the local multiplet basis Ciavarella, KIco, Savage *Phys.Rev.D* 103 (2021) 9, 094501 Qubit implementation of SU(3) with irrep truncations

Mixed basis

A new basis for Hamiltonian SU(2) simulations Bauer, D'Andrea, Freytsis, Grabowska - 2307.11829 Formulated an alternative basis that contains parts of E & B basis **B** (group element) basis

Primitive Quantum Gates for an SU(2) Discrete Subgroup: BT Gustafson, Lamm, Lovelace, Musk - *Phys.Rev.D* 106 (2022) 11, 114501 Qubit and Qudit gates for approximating SU(2) with subgroups

Well, what keeps you up at night?

arbitrary precision, gauge fixing, quantum noise, error correction, gate costs, classical simulatability

This is not a trivial decision, it breaks symmetries!

34 5/4/2024 Hank Lamm

The ladder of discrete gauge theories in HEP calculations Coherence Time Increasing

The ladder of discrete gauge theories in HEP calculations Coherence Time Increasing

Secretly, these are continuous groups coupled to Higgs fields

36 5/4/2024 Hank Lamm

How do quarks and gluons interact?

or, picking a lattice Hamiltonian

$$+\sum_n E_n^2 + \sum_{n,k} \operatorname{ReTr} U_p$$
Gauge E field Gauge B or *plaquette* term

But....shouldn't use Kogut-Susskind Hamiltonian

$$egin{aligned} K &= rac{g^2}{2a} \mathrm{Tr}[WE_i(\mathbf{x})E_i(\mathbf{x}) + ZE_i(\mathbf{x})U_i(\mathbf{x})E_i(\mathbf{x}+a\hat{i})U_i^\dagger(\mathbf{x})] \ V &= rac{2N}{ag^2}[XP_{ij}(\mathbf{x}) + rac{Y}{2}(R_{ij}(\mathbf{x})+R_{ji}(\mathbf{x})] \end{aligned}$$

Improvement and analytic techniques in Hamiltonian lattice gauge theory Carlsson - PhD thesis, 0309138 [hep-lat] Derivation of KS and Improved Hamiltonians and variational techniques

Improved Hamiltonians for Quantum Simulation of Gauge Theories Carena, Lamm, Li, Liu *PRL 129 (2022) 5* Developed quantum circuits for O(a⁴) pure-gauge Hamiltonian

39

Hamiltonian Formulation of Wilson's Lattice Gauge Theories Kogut & Susskind *Phys.Rev.D* 11 (1975) 395-408 Formulated O(a²) lattice Hamiltonian for LGT with staggered matter

But....shouldn't use Kogut-Susskind Hamiltonian

Improvement and analytic techniques in Hamiltonian lattice gauge theory Carlsson - PhD thesis, 0309138 [hep-lat] Derivation of KS and Improved Hamiltonians and variational techniques Improved Hamiltonians for Quantum Simulation of Gauge Theories Carena, Lamm, Li, Liu *PRL 129 (2022) 5* Developed quantum circuits for O(a⁴) pure-gauge Hamiltonian

$$egin{aligned} K &= rac{g^2}{2a} \mathrm{Tr}[WE_i(\mathbf{x})E_i(\mathbf{x}) + ZE_i(\mathbf{x})U_i(\mathbf{x})E_i(\mathbf{x}+a\hat{i})U_i^\dagger(\mathbf{x})] \ V &= rac{2N}{ag^2}[XP_{ij}(\mathbf{x}) + rac{Y}{2}(R_{ij}(\mathbf{x})+R_{ji}(\mathbf{x})] \end{aligned}$$

Comparing to the commonly used H_{KS} , H_{I} should allow quantum simulations with >2^d fewer qubits... [with a gate count] comparable or less than that of H_{KS} for theories with d ≥ 2...

How do I evolve a quantum state?

or, how to approximate e^{iHt}

What is trotterization?

$$\mathcal{U}(t) = e^{-iHt} \approx \left(e^{-i\delta t \frac{H_V}{2}} e^{-i\delta t H_K} e^{-i\delta t \frac{H_V}{2}} \right)^{\frac{t}{\delta t}}$$
$$\approx \exp\left\{ -it \left(H_K + H_V + \frac{\delta t^2}{24} (2[H_K, [H_K, H_V]] - [H_V, [H_V, H_K]]) \right) \right\}$$

42 5/4/2024 Hank Lamm

How to estimate Trotter errors

Loose error bounds obtained from

 $||U(t)-U_{trott}(t))|| \leq (\delta t)^n \sum_{i,j,\cdots} [[H_i,H_j],\cdots]$

• **Overly** conservative: cutoff states are largest EV $\|\mathcal{O}_{14}\| = \|\left[H_M(r+1), [H_I^{(k)}(r), H_I^{(j)}(r)]\right]\| \leq 4x^2\mu \quad (k > j)$

Empirically, we find MUCH smaller

State-dependent error bound for digital quantum simulation of driven systems Hatomura - PRA 105, L050601 (2022) Compares trotter errors for given initial state to norm-based estimates

Have you heard of decoupling theorem?

General quantum algorithms for Hamiltonian simulation with applications to a non-Abelian lattice gauge theory Davoudi, Shaw, Stryker - 2212.14030 [hep-lat] Understanding the synthesis and Trotter errors, along with algorithmic choices in 1+1 SU(2)

$$\begin{split} \|\mathcal{O}_3\| &= \left\| \left[H_I^{(j)}(r), [H_I^{(j)}(r), H_I^{(k)}(r)] \right] \right\| &\leq 4x^3 \quad (k > j), \\ \|\mathcal{O}_5\| &= \left\| \left[H_I^{(j)}(r), [H_I^{(j)}(r), H_I^{(k)}(r+1)] \right] \right\| &\leq 4x^3, \\ \|\mathcal{O}_{13}\| &= \left\| \left[H_I^{(l)}(r), [H_I^{(k)}(r), H_I^{(j)}(r)] \right] \right\| &\leq 4x^3 \quad (k > j, l > j), \end{split}$$

$$\begin{split} \|\mathcal{O}_{14}\| &= \|\left[H_M(r+1), [H_I^{(r)}(r), H_I^{(r)}(r)]\right]\| &\leq 4x \ \mu \quad (k > j), \\ \|\mathcal{O}_{15}\| &= \|\left[H_I^{(l)}(r+1), [H_I^{(k)}(r), H_I^{(j)}(r)]\right]\| &\leq 4x^3 \quad (k > j), \\ \|\mathcal{O}_{19}\| &= \|\left[H_I^{(l)}(r), [H_I^{(k)}(r+1), H_I^{(j)}(r)]\right]\| &\leq 4x^3 \quad (l > j), \\ \|\mathcal{O}_{20}\| &= \|\left[H_M(r+1), [H_I^{(k)}(r+1), H_I^{(j)}(r)]\right]\| &\leq 4x^2\mu, \\ \|\mathcal{O}_{22}\| &= \|\left[H_I^{(l)}(r+1), [H_I^{(k)}(r+1), H_I^{(j)}(r)]\right]\| &\leq 4x^3, \\ \|\mathcal{O}_{24}\| &= \|\left[H_I^{(l)}(r+2), [H_I^{(k)}(r+1), H_I^{(j)}(r)]\right]\| &\leq 4x^3. \end{split}$$

• Can we use **classical Euclidean calculations** to compute?

Primitive gates as subroutines

General Methods for Digital Quantum Simulations of Gauge Theories Lamm, Lawrence, Yamauchi - *Phys.Rev.D* 100 (2019) 3, 034518 Constructed this general formalism for group independent implementation

LGT require group operations on registers — Think **native gates** for gauge theories

- Inversion gate: $\mathfrak{U}_{-1}\ket{g}=\Ket{g^{-1}}$
- Multiplication gate: $\mathfrak{U}_{ imes}\ket{g}\ket{h}=\ket{g}\ket{gh}$
- Trace gate $\mathfrak{U}_{\mathsf{Tr}}(heta)\ket{g}=e^{i heta\,\mathsf{Re}\,\mathsf{Tr}\,g}\ket{g}$
- Fourier Transform gate: $\mathfrak{U}_F \sum_{g \in G} f(g) \ket{g} = \sum_{\rho \in \hat{G}} \hat{f}(\rho)_{ij} \ket{\rho, i, j}$

(a) $\mathcal{U}_{V_{KS}}$ assuming linear register connectivity.

(b) $\mathcal{U}_{V_{\text{rect}}}$ assuming linear register connectivity.

$$|U_1\rangle = \mathfrak{U}_F^{\dagger} = \mathfrak{U}_{\text{phase}} = \mathfrak{U}_F^{\dagger} = |U_1\rangle = \mathfrak{U}_F^{\dagger} = \mathfrak{U}_{\text{phase}} = \mathfrak{U}_F^{\dagger} = \mathfrak{U}_{-1}^{\dagger} = \mathfrak{U}$$

(c) $\mathcal{U}_{K_{KS}}$. (d) $\mathcal{U}_{K_{2L}}$.

How can we annoy experimentalists?

or, HEP for quantum computing

What does the stack look like?

What does the stack look like?

How do bosonic quantum computers work?

$$H_{s} = \hbar\omega_{s} \left(b^{\dagger}b + \frac{1}{2} \right) - \hbar(\omega_{q} + \chi_{s}b^{\dagger}b)\frac{\sigma_{z}}{2}$$
$$|\alpha\rangle = e^{-|\alpha|^{2}/2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} |n\rangle$$

 Instead of defining qudits by Fock states, define them in coherent basis

 α is related to canonical p,q of the oscillator

Figure 5: Ideal Wigner tomography (top panel) and corresponding Fock state occupation probability (bottom panel) for (a) the ground state $|0\rangle$, (b) a coherent state ($\alpha = 1$) with an average photon number $\bar{n} = 1$, and (c) the Fock state $|1\rangle$. Note that the populations are distributed across multiple Fock states for the coherent state.

Qudit-based quantum computing with SRF cavities at Fermilab Roy, Kim, Romanenko, Grassellino - PoS LATTICE2023 (2024) 127 Gentle review of specific hardware and state-of-the-art results

Drawing stars around scars

• Idea is to construct a constellation of states in some "group", and then take a subgroup, or superposition of states to be the codespace

Hardware-Efficient Autonomous Quantum Memory Protection Leghtas et al. - Phys. Rev. Lett. 111, 120501 Develops psk cat codes and their gates Encoding a qubit in an oscillator Gottesman, Kitaev, and Preskill - Phys. Rev. A 64, 012310 Develops a lattice-based code

2T-Qudits from two modes

The 2T-qutrit, a two-mode bosonic qutrit Denys, Leverrier - Quantum 7, 1032 (2023) Develops a Z₃ qutrit from larger, nonabelian group

 $2T = Q \rtimes \mathbb{Z}_3$

The 2T-quocit: a two-mode bosonic qudit for high energy physics Kurkcuoglu, Lamm, Ogunkoya, Pierattell - in prep Develops a Q quoctit from larger, nonabelian group

2T-Qudits from two modes

The 2T-gutrit, a two-mode bosonic gutrit Denys, Leverrier - Quantum 7, 1032 (2023) Develops a Z₂ qutrit from larger, nonabelian group

 $2T = Q \rtimes \mathbb{Z}_3$

51

5/4/2024

Hank Lamm

The 2T-quocit: a two-mode bosonic qudit for high energy physics Kurkcuoglu, Lamm, Ogunkoya, Pierattell - in prep Develops a Q quoctit from larger, nonabelian group

Benefits of Nonabelian Qudits for Primitive Gates

- Inversion gate is virtual (just relabel the states)
- Multiplication gate is a controlled permutations
- Typically "X^{a,b}" native gates

TABLE IV. Number of physical T gates and clean ancilla required to implement logical gates for primitive gates for BT.

Gate	T gates	Clean ancilla
\mathcal{U}_{-1}	28	0
$\mathcal{U}_{ imes}$	154	1
\mathcal{U}_{Tr}	$12.65 \log_2(1/\epsilon)$	0
\mathcal{U}_{QFT}	$48\log_2(1/\epsilon)+96$	0

(a) $\mathcal{U}_{V_{KS}}$ assuming linear register connectivity.

(b) $\mathcal{U}_{V_{\mathrm{rect}}}$ assuming linear register connectivity.

Benefits of Nonabelian Qudits for Primitive Gates

- Inversion gate is virtual (just relabel the states)
- Multiplication gate is a controlled permutations
- Typically "X^{a,b}" native gates

TABLE IV. Number of physical T gates and clean ancilla required to implement logical gates for primitive gates for BT.

Gate	T gates	Clean ancilla
\mathcal{U}_{-1}	28	0
$\mathcal{U}_{ imes}$	154	D(10) 1
\mathcal{U}_{Tr}	$12.65 \log_2(1/e)$	ε) Ο
\mathcal{U}_{QFT}	$48\log_2(1/\epsilon) +$	96 0

(a) $\mathcal{U}_{V_{KS}}$ assuming linear register connectivity.

(b) $\mathcal{U}_{V_{\mathrm{rect}}}$ assuming linear register connectivity.

(c) $\mathcal{U}_{K_{KS}}$.

(d) $\mathcal{U}_{K_{2L}}$.

Could decrease total fault tolerant gate cost by factor of 2

Big unsolved problem in fault tolerant qudits

Problem: Given a SU(d) element, find the best approximation in a subset
For qubits, we know efficient algorithms for gate synthesis

Figure 1: RUS design circuit to implement unitary V.

Efficient Synthesis of Universal Repeat-Until-Success Circuits Bocharov, Roetteler, Svore - Phys. Rev. Lett. 114, 080502 (2015) Develop algorithm for single-qubit gate synthesis using number theory

• For qudits, shrug...we have an estimated, nonconstructive bound

$$n \gtrsim \frac{\ln\left(\frac{B}{A}\right) + (p^2 - 1)\ln\left(1/\epsilon\right)}{\ln(p(p - 1))}$$

A Normal Form for Single-Qudit Clifford+T Operators Jain, Kalra, Prakash - arXiv:2011.07970 Propose a normal form for odd prime qudits

Sounds alot like finding the digitization of a gauge theory to me...

Endgame

- The road to quantum utility in HEP will be long and winding
- It is coming into focus that the answer to the questions
 Do we need it? Are the benefits to HEP specialized hardware? Should theorists be engaged now?
 are all YES!
- Many theoretical issues remain unresolved, and could reduce costs
- Error Correction and Gate Synthesis may benefit from HEP insight
- Qudit devices including bosonic computers have novelties worth leveraging

Cause we're young and we're reckless, We'll take this way too far