
TRIUMF Site Report Tier-1

Denice Deatrich

HEPIX October 24, 2011 Vancouver

Denice Deatrich

TRIUMF Site Report - Tier-1, HEPIX Meeting, Vancouver, October 2011

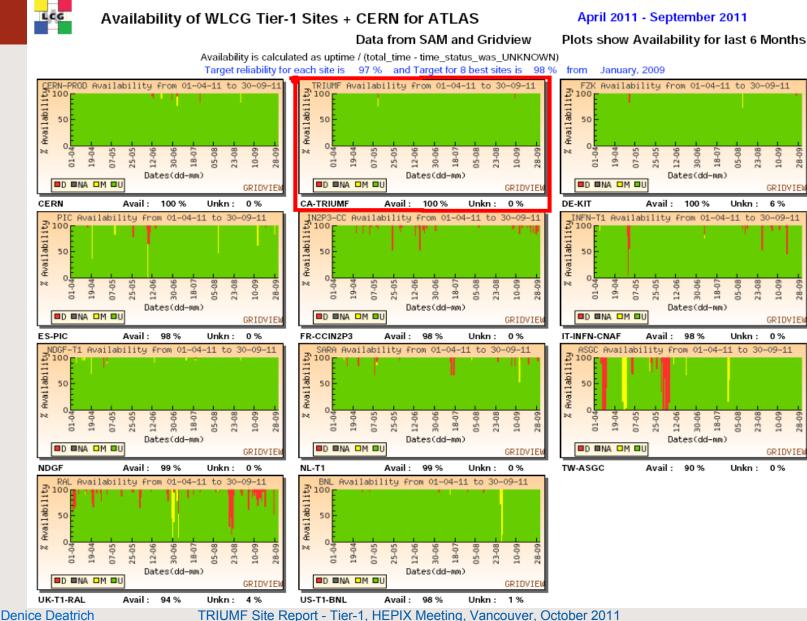
Outline

• TRIUMF Tier-1

- Review personnel and operational status
- Review current cluster & infrastructure configuration
- Look at some topical issues
- Peek at the procurement plans for this year
- TRIUMF Site-Wide
 - Highlight some recent TRIUMF networking changes

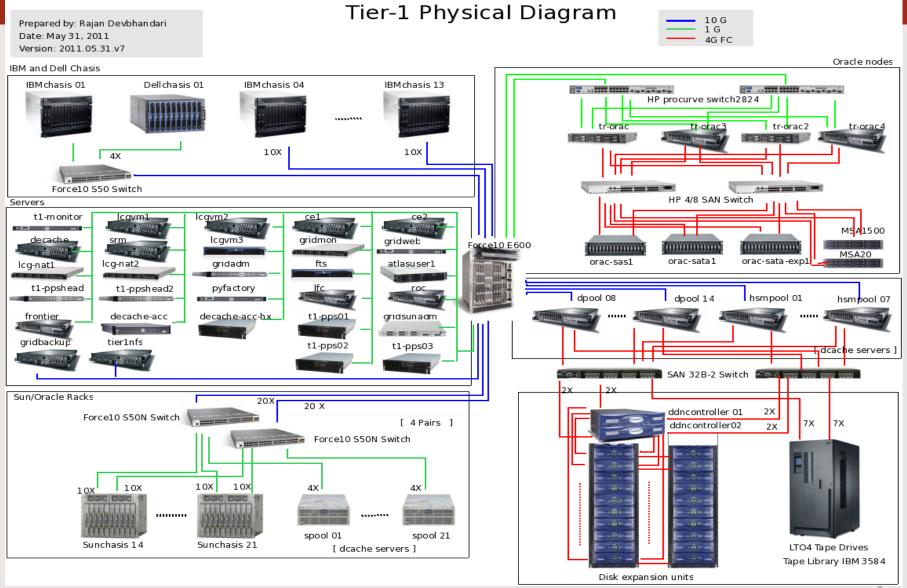
Operations I

- Systems support & operations personnel:
 - Group leader, 5 experts (systems, grid, databases, network, storage), 1 hardware specialist
 - 24x7 on-call rotation shared by Systems experts and group leader
- User support personnel:
 - 3 experts ATLAS software, Grid applications, Tier-3 tools and user analysis in the Canadian cloud
- Data centre current capacity and server numbers:
 - 1210 cores (232 worker nodes, all blades)
 - 2.1 PB disk (usable), 5.5 PB of tape (recently upgraded from 1.6 PB)
 - 97 servers (storage, middle ware, admin, standby and test servers). 30 of these are virtual. Note that the resources used by the user support personnel are not counted here.



Operations II

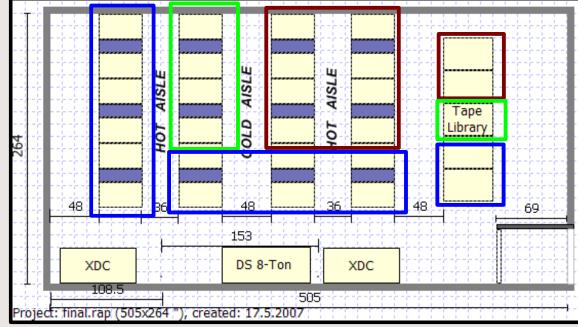
- Redundant configurations for effective high availability
 - UPS, redundant cooling units, hardware redundancy in dual power supplies, redundant networking, raided disks, ...
 - Critical service redundancy using virtualization with configured virtual standby servers (e.g. site-bdii / site-bdii-sb)
 - Nagios sensors for email & SMS notification of T1 personnel.
 - Automated shutdown of some systems for critical temperature events (especially worker nodes)
 - System log monitoring and cron job alerts for hardware issues not yet covered by Nagios
 - Site LAN/WAN is monitored 24x7 (expert paging since 2007)
 - Grid services monitored by WLCG (SAM, GGUS alarms)
 - Redundancy in personnel (holidays, illness, etc)



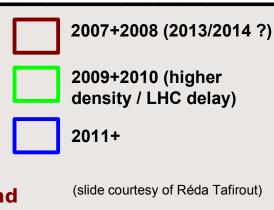
Tier-1 Availability

Cluster overview

Denice Deatrich


TRIUMF Site Report - Tier-1, HEPIX Meeting, Vancouver, October 2011

Infrastructure


- Limited floor space: 43' x 22'
- No false floor
- Rack optimization:
 - high density solution
 - hot & cold configuration
- Power estimate:

~0.4 MW (by 2012) (including cooling)

- Cooling solution: Liebert XD system (very flexible) 340 kW total capacity (~35% used)
- UPS: 225 kVA (in the future CPU racks on regular power or expand UPS capacity) (~55% used). (no diesel backup except for core network)

• Need to explore future expansion scenarios for 2015 and beyond (Tier-1 will be a 10 years old facility...).

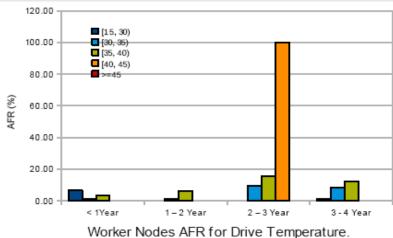
Operating system status

- Operating systems and architectures
 - Linux
 - Mostly Linux, all are at SL 5.5-5.7 64-bit (no 32-bit SL5 nodes)
 - 4 Red Hat EL 5.7 (Oracle RACs)
 - 4 SL4 nodes left 2 management nodes, 1 Atlas software NFS server, and 1 virtual (32-bit) node – should be updated to SL5 by the year's end
 - Solaris
 - 22 nodes 21 Thors (x4540) and 1 management node Solaris 10 9/10 (Update 9)
 - very conservative only updating once or twice a year

Virtualization Status

- 4 Xen servers (will purchase at least one more)
 - 2 servers for general Tier-1 needs
 - dual cpu, dual and quad core, 3 hardware raid-1 disks on each, 10k or 15k SAS
 - 2 servers dedicated to Canadian ROC (prod and standby)
 - guest disks are LVM partitions spread across the available raided disks
 - guest swap disks are sparse (usually 1Gb) files
 - guests either provide production services, or operate as standby for other production servers. We also have a few pre-production (test) guests.
 - have implemented fail-over scripts for prod. <=> standby
- Plan to move from SL5 Xen-based to SL6 KVM-based hosts in 2012

Worker nodes - CVMFS


- CVMFS implementation (current version is 2.0.3)
 - since May we have a cvmfs implementation (ce3.triumf.ca) with 2 blade chassis (28 workers)
 - /home re-partitioned on workers borrowed 25 GB from /home to create a dedicated partition (/t1cvmfs) for the cvmfs cache. CVMFS_QUOTA_LIMIT=22500
 - we reduce the root reserve to 1% on /t1cvmfs (also /home)
 - created an RPM (t1-cvmfs-config) to manage the local setup
- Local CVMFS Squid server
 - squid server implemented and configured on our Atlas software NFS server
- Issues
 - So far the main issue is cvmfs updates the current need to drain the batch queue is a *distinct disadvantage*

Worker node – disk failures

Disk failure monitoring

- high disk failure rate in our IBM blades ~ 30/year in past 2 years —
- the problem manifests as partition *read-only* remounts _
- these disks are at least 10 degrees warmer than other Vendor blades. We analyzed disk temperatures in the data centre, looking at the <u>Average Failure Rates</u> for all disks.
- we implemented a cron job to monitor the partitions every 15 min. It stops or kills pbs_mom to prevent black holes. (Essentially the script tries to touch and remove a file in each partition)

231	231				
Age Group	Total Disk #	< 1Year	1 – 2 Year	2 – 3 Year	3 - 4 Year
[15, 30)	78	6.41	0.00	0.00	1.28
[30, 35)	85	1.18	1.18	9.41	8.24
[35, 40)	65	3.08	6.15	15.38	12.31
[40, 45)	3	0.00	0.00	100.00	0.00
>=45		0.000	0.000	0.000	0.000

(disk failure analysis by Hongyun Sun)

Worker node – lvm stripe-0

- In 2010 we started doing large LVM stripe-0 configurations on worker nodes for /home when 2 disks are available:
 - /dev/sda swap, /boot, /, /usr, /var, /tmp, /opt (~ 12 GB total)
 - lvm volume group combined /dev/sda9 + /dev/sdb
 - create 2 lvm stripe-0 partitions for /home and cvmfs. In kickstart use a few tricks to issue the command:
 # lvcreate -i2 ... (will do in kickstart post-install in the future)

lvs -segments

LV	VG	Attr	#Str	Туре	Ssize
cvmfs	vg0	-wi-ao	2	striped	25.00G
home	vg0	-wi-ao	2	striped	230.00G

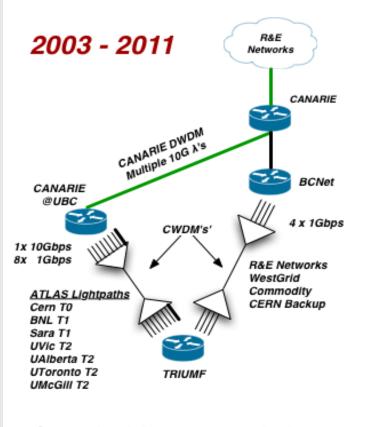
- Advantage: increases amount of available disk space, augments performance, provides graceful exit on disk failure
- We favour 2-disk worker node configs. in next procurement

- Last large purchase to spend balance of our current CFI¹ capital grant
 - RFP goes out immanently ; vendor response deadline will be 3-4 weeks later
 - Disk storage: additional 4 PB usable
 - CPU: additional 3500 cores
 - 2011 purchases (last few months)
 - additional 3.9 PB of tape (LTO5) for our IBM TS3500
 - additional 2 high density frames with 10 LTO 5 drives and 2600 tapes
 - see Simon Liu's presentation on Thursday
 - extra 10g line cards for our Force10 E600 core switch
 - Liebert in-row coolers for new racks
 - will also purchase additional servers as needed in the near future

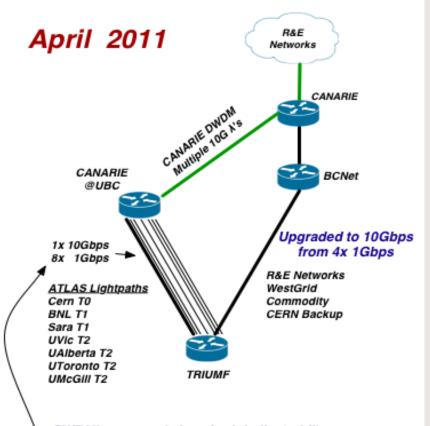
¹ Canadian Foundation for Innovation

•

TRIUMF Network Upgrade I


2003-2011

- TRIUMF used CWDM technology to multiplex up to 11 external n/w circuits (mostly ATLAS light-paths) onto two pairs of fiber between TRIUMF and its network providers
 BCNet and CANARIE
- With the exception of the 10Gbps LHCOPN circuit to CERN T0, all other circuits were limited to 1Gbps.
- In April 2011 moved away from CWDM and leased 9 dedicated fibers with ability to go up to 10Gbps on each
 - 1x 10Gbps circuit to BCNet
 - Shared between R&E networks and Commodity networks
 - 8 dedicated fibers into CANARIE's ROADM network at UBC for the LHC/ATLAS T0, T1 and T2 light-paths


(these slides courtesy of Steve MacDonald)

TRIUMF Network Upgrade II

Only 2 pairs of Fiber. All external circuits are multiplexed on to multiple λ 's. With exception of one λ per CWDM all other $\underline{\lambda}$ limited to 1Gbps

CWDM's removed, Acquired dedicated fibers Each circuit can now be upgraded to 10Gbps

TRIUMF Network Upgrade III

VoIP Implementation

- PBX (CS1000M) reached its limit for traditional telephony lines
- All new buildings now deployed with VoIP
 - Stores/Design office (Sep 2011), next year ARIEL (TRIUMF's new e-linac)
- Plan to start migrating other areas of TRIUMF that can support VoIP at the edge.
- All new edge switches PoE capable, currently Avaya/Nortel 5520
- Telephony becoming responsibility of Networking Group

Fiber Infrastructure being upgraded

 Replacing the FDDI grade multi-mode fiber from the 1990's with single-mode fiber to support planned 10Gbps between buildings

In the process of upgrading network core to 10Gbps

Denice Deatrich

•

٠

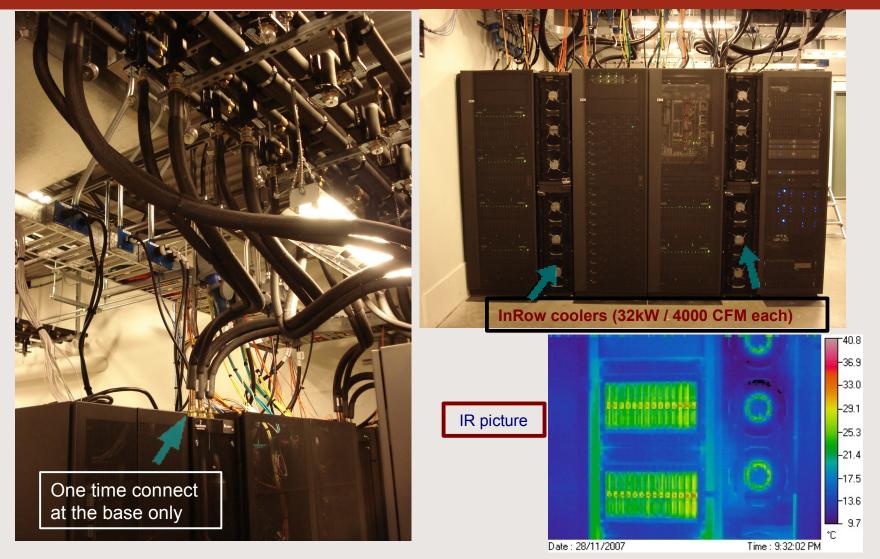
Future Tier-1 Issues

- Data centre infrastructure is sufficient for this TRIUMF planning phase.
- Hardware purchased in 2007 occupies 30% of the room. Its warranty will expire in 2012.
- We are exploring warranty renewal strategies for up to 2014 (e.g. core switch).
- Beyond 2014: a refresh of the data centre will be needed, and will be part of the the next TRIUMF planning phase.

Thank You, Merci!

Acknowledgements:

Canada Foundation for Innovation (CFI) British Columbia Knowledge Development Funds (BCKDF) National Research Council (NRC) National Science & Engineering Council (NSERC) CANARIE BCNET HEPNET



4004 Wesbrook Mall Vancouver, B.C. Canada V6T 2A3 Tel: 604 222-1047 Fax: 604 222-1074

www.triumf.ca

Cooling I

Denice Deatrich

TRIUMF Site Report - Tier-1, HEPIX Meeting, Vancouver, October 2011

(slide courtesy of Réda Tafirout)

Cooling II

Liebert DS unit: 24 kW cooling (baseline cooling + humidity control)

(slide courtesy of Réda Tafirout)

Denice Deatrich