Gas Detectors Physics 1

Basic Detection Processes

- Energy Loss: Coulomb Interactions
- Drift and Diffusion of Charges
- Collisional Excitation and Ionization
- Avalanche Charge Multiplication

Charged Particles Coulomb Interactions: Excitations and Ionizations

H. Fischle et al, Nucl. Instr. and Meth. A301 (1991) 202

Charged Particles δ Electrons

4000 Energy Loss Asymmetry: $\sigma_{\text{core}} = (60.1 \pm 0.3) \; \mu\text{m}$ Core Gaussian + Tails $\sigma_{tail} = (167.1\pm2.1)~\mu\text{m}$ 3000 $\sigma_{\text{comb}} = (75.6 \pm 0.5) \ \mu\text{m}$ Perpendicular Tracks Counts 2000 1000 -200 200 400 -4000 Position residuals / µm

L. Scharenberg, MPGD 2022

Energy loss asymmetry: large incidence angles

Position Accuracy vs Incidence Angle:

Differential Energy Loss in thin Gas Samples:

Charged Particles Energy Loss Statistics: Gauss vs Landau

Charged Particles Particle Identification

Alice GEM-TPC Differential Energy Loss (Truncated mean)

Photons Photoelectric, Compton, Pair Production

A. Thompson et al, X-RAY DATA BOOKLET (2001)

Soft X-Rays

Absorption Length in Gases at NTP

Soft X-Rays ESCAPE PEAK

Soft X-Rays Absorption Radiography

2001: GEM with Electronic Readout

2018: GEM with Optical Readout

F. Sauli Nucl. Instr. Meth. A461(2001)47 F. Brunbauer et al, JINST13 (2018)T02006

Detection of Neutrons

Fabio SauliDRD1 Gas Detectors SchoolNovember 27, 2024

Detection of Neutrons

 ${}_{2}^{3}He + n \rightarrow {}_{1}^{3}H + p$

Ionization Chamber with Otical GEM Readout

F.A.F. Fraga et al, Nucl. Instr. and Meth. A478 (2002) 357

 $^{10}_{5}B + n \rightarrow ^{7}_{3}Li + \alpha$

Thermal Neutrons Radiography ¹⁰B Coated GEM

M. Klein and Ch. Schmidt Nucl. Instr. and Meth. A628 (2011) 9

Fabio Sauli DRD1 Gas Detectors School November 27, 2024

Drift and Diffusion of lons

Drift and Diffusion of lons

GAS	ION	$\mu (cm^2 V^{-1} s^{-1})$
He	He ⁺	13.0
Ar	Ar^+	1.7
CH_4	CH_4^+	2.22
Ar	CH_4^+	1.87
Ar	CO_2^+	1.72

Collisional Charge Transfer:

If $E_i(B) < E_i(A)$:

 $A^{+} + B --> A + B^{+}$

Blanc's Law:

$$\frac{1}{\boldsymbol{\mu}_i} = \sum_{j=1}^n \frac{P_j}{\boldsymbol{\mu}_{ij}}$$

Drift and Diffusion of Electrons

Drift Velocity $w^{-} = s/t$

Piet Verwilligen and Djunes Janssens: MODELLING AND SIMULATIONS

Fabio Sauli DRD1 Gas Detectors School November 27, 2024

Drift and Diffusion of Electrons

Longitudinal and Transverse Diffusion

Drift of Electrons in Magnetic Field

Drift of Electrons in Magnetic Field: E // B

Time Projection Chambers: Longitudinal Position Accuracy vs Drift Length

Depends from Gas and Fields

Electron-Molecule Collisions

Eletron-Molecule Cross Section at Increasing Electric Fields:

https://nl.lxcat.net/home/

Electrons Energy Distribution

Electrons Energy Distribution

"Cooling" Effect of Molecular Gas Additions

Major Outcomes of the Electron-Molecule Collisions

Fluorescence ad Scintillation

Noble Gases and Low Ionization Potential Vapors:

Fabio SauliDRD1 Gas Detectors SchoolNovember 27, 2024

Fluorescence ad Scintillation

CF4 Scintillation:

F. Brunbauer, CERN GDD (2020)

Davide Pinci: OPTICAL AND HYBRID READOUT TECHNIQUES

High Fields : Charge Multiplication

$$n(x) = n_0 e^{ax}$$
 $\alpha = \alpha(E)$: Townsend coefficient

$$M(x) = \frac{n}{n_0} = e^{\partial x}$$
 Charge Gain

Cloud chamber Images of Avalanches:

H. Raether Electron Avalanches and Breakdown in Gases (Butterworth 1964)

Charge Multiplication

A. Sharma and F. Sauli, Nucl. Instr. and Meth. A334(1993)420

Charge Multiplication

PROPORTIONAL COUNTER

Fabio Sauli
 DRD1 Gas Detectors School
 November 27, 2024

Charge Multiplication

Avalanche Size Probablility for 1 Primary Electron (Furry Law):

$$P(N) = \frac{1}{\overline{N}}e^{-\frac{N}{\overline{N}}}$$

Avalanche Size Probablility for *n* Primary Electrons:

$$P(n,N) = \left(\frac{N}{\overline{N}}\right)^{n-1} \frac{e^{-\frac{N}{\overline{N}}}}{(N-1)!}$$

Charge Multiplication

Avalanche Size Probability at High Fields (High Gains) Polya function:

Single Electron Avalanche Size at Increasing Gains (Experimental):

H. Sclumbohm, Zeit. Physik 151(1958)563

Fabio Sauli DRD1 Gas Detectors School November 27, 2024

GASEOUS COUNTERS: MWPCs TO MPGDs

MWPC

MICROMEGAS

MiroGroove, MicroGap, MicroPixel Resistive Plate Well

Esther Ferrer Ribas: MPGD TECHNOLOGIES

Very High Fields: Transition Avalanche → Streamer → Discharge

The field is Increased in Front and Behind the Avalanche Photons are Emitted and Reconverted in the High Field:

Secondary Avalanches Formation:

Tansition to Forward-Backward Streamer:

DISCHARGE !

Raether Limit: ~ 10⁷ electrons-ions

Discharge

Destructive Effects of Discharges:

Drift Chamber (1974)

MSGC (1994)

Discharge Prevention and Mitigation in MPGDs:

Piotr Gasik: GAS DETECTORS PHYSICS 2

To Know More on Gaseous Detectors:

F. Sauli and E. Oliveri: Gas Detectors Handbook

http://fabio.home.cern.ch/fabio/handbook.html

.... and the other lectures at this School!