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Potential for a given charge distribution

Charge distribution with boundary condition, Poisson equation:

In regions of space without charge and given boundary, Laplace equation:

Gauss Law:
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A
Uniqueness

Let’s assume we have two solutions of the same Poisson equation

The difference between these two solutions must satisfy the Laplace equation

In general it holds that

Using the fact that                      and applying Gauss’ theorem we have  

In case                  on the surface we have              on the surface and the left side 

vanishes. That means that the right hand side must also vanish and we have

Defining the potential           on the entire surface therefore uniquely defines the  

electric field in the volume. The same holds in case we define               on the   

entire surface. Evidently the uniqueness theorem also holds in case we define            

on a fraction of the surface and              on the rest of the surface.x

y

⍴(x) 

A

12/2/19 5Signals in Particle Detectors, W. Riegler/CERN
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Conductors

In conducting materials, charge will move as long as there is an electric field 
present. 

A static situation is only achieved once the electric field inside the conductor 
is zero and therefore also the charge density inside the conductor is zero. All 
the charge is sitting on the surface of the conductor.

The electric field on the surface of the conductor must be perpendicular to 
the conductor, since a component parallel to the conductor would again 
move the charge.

Moving a test charge across the surface of the conductor one crosses the 
field lines perpendicular and no work is performed. A conductor surface is 
therefore and equipotential surface.

Since the electric field inside the conductor is zero and the field-lines are 
perpendicular to the surface, we can use Gauss law to relate the surface 
charge density to the field on the surface:

→ The charge density (C/m2) at a given point on the conductor surface is 
equal to ε0 times the electric field in this point.

E

Conductor
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Induced charge on metal electrodes

V1 V2

V0

V3

𝝋(x) 

⍴(x) 

Poisson equation:

The charge on the electrode is given by the integral  of 
the electric field over the surface of the electrode

10/14/24
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The Principle of Signal Induction on Metal 

Electrodes by Moving Charges



A point charge q at a distance y’ above a grounded metal plate ‘induces’ a surface charge. 
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Induced charge on an infinite plane

y’

+q

-- - -- -- --
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In order to find the charge induced on an electrode we therefore have to

a) Solve the Poisson equation with boundary condition that 𝜑=0 on the conductor 
surface.

b) Calculate the electric field E on the surface of the conductor

c) Integrate σ=e0E over the electrode surface

q

y’

+

-- - -- -- --

Induced charge on an infinite plane



The solution for the field of a point charge in front of a metal plate is equal to the solution of the 
charge together with a (negative) mirror charge at y=-y’.
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+q

y’

-- - -- -- --

=

-q

(x’, y’)

E

The potential for the above problem is therefore:
(x’, -y’)

y

x

+q

Induced charge on an infinite plane



We therefore find a surface charge density of

And therefore a total induced charge of 
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y’

+q

-- - -- -- --
Qind

Induced charge on an infinite plane



q

q

• Moving the point charge closer to the metal plate, the surface charge distribution becomes more peaked

• The total induced charge is however always equal to –q, 

• The charge is just rearranged on the surface and no current is flowing between the plate and ground.. 

I(t)=0

13

y

x

Charge at position x’=0, y’, z’=0

Induced charge on an infinite plane
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qIf we segment the grounded metal plate and 
if we ground the individual strips, the surface 
charge density doesn’t change with respect 
to the continuous metal plate.

Qind

The charge induced on the individual strips is now 
depending on the position (x’, y’) of the charge.

14

y

x

-w/2-w/2

(x’, y’)

Induced charge on strip electrode
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qIf the charge is moving with a velocity 
v towards the strip we have 

V

Qind(t)
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y

x

-w/2-w/2

Iind(t)

While the charge is moving there is a current flowing 
between the strip and ground.

→ The movement of the charge induces a current. 

y0

Induced current on strip electrode



⍴(x) ⍴(x) 

Reciprocity theorem

This is simply a result of the fact that the Coulomb force depends only on the relative distance of the charges and 

not on absolute position in space. 

The expressions can be interpreted as the work needed to move one charge distribution in the electric field of the 

other charge distribution, actio = reactio

Sounds like a trivial statement, but has very practical consequences.

Two arbitrary charge distributions

1610/14/24
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Reciprocity theorem
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Q1 (x1,y1,z1)

Q2
(x2,y2,z2)

Example: two point charges

→ Correct but not really useful
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Reciprocity

y

x

y

x

Grounded metal electrode of arbitrary shape

Point charge q at (x’, y’, z’)

→ Knowing the potential for the electrode at voltage V0 in 

absence of any external charges we can directly 

calculate the charge induced on the grounded electrode 

in presence of a point charge !!

q

V0
V=0

(x’, y’, z’)
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Theorem, induced charge

The charge induced on a grounded conducting electrode by a 

point charge q at position x can be calculated the following way: 

Remove the point charge, put the electrode in question to potential 

Vw while keeping all other electrodes at ground potential.

This defines the weighting potential 𝜓n(x) of this electrode and the 

induced charge is

We therefore do not have to solve the Poisson equation for a point 

charge but we just have to solve the Laplace equation for the 

given boundary conditions on the electrodes. 

For detectors with long electrode, like wire chambers, RPCs, 

silicon strip detectors, we only have to solve the 2D Laplace 

equation instead of the 3D Poisson equation.

Specifically for numeric field calculations this is much easier and 

numerically stable.
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𝜓1(x) 
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Theorem, sum of induced charges
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V1=Vw

V2=0
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𝜓1(x) 

The sum of all induced charges is defined by the sum of all 

weighting potentials 

This sum is related to the situation where all electrodes are put 

to voltage Vw. This will however result in a constant potential Vw

in the entire volume between the electrodes, so we have

The sum of all charges induced by a charge q is equal to –q, in 

case the geometry is such that one electrode encloses all 

others.
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x

Theorem, induced current

The current induced on a grounded conducting electrode by a 

point charge q moving along a trajectory x(t) can be 

calculated the following way: 

This weighting field En(x) is given by 

→ Ramo-Shockley theorem

Since the sum of all induced charges is constant and equal to 

–q at any time, the sum of all induced currents is zero at any 

time, in case there is one electrode enclosing all the others.
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Ramo Shockley theorem (Reciprocity theorem) 
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Signal polarity

I(t)

The definition of the induced current 

defines that the current arrow points away from the electrode.

A positive current refers to a reduction of charge on the electrode.

The signal is positive if:

Positive charge is moving from electrode to ground or

Negative charge is moving from ground to the electrode

The signal is negative if:

Negative charge is moving from electrode to ground or

Positive charge is moving from ground to the electrode

+q
---
-

-
-q

++
++

+

I(t)

+q
---
-

-
-q

++
++

+

Positive Signal

Negative Signal

10/14/24
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Theorem, total induced charge

The total charge flowing between the electrode and ground when the charge q 

is moving from point x0=x(t0) to x1=x(t1)

This charge is independent of the path between x1 and x2.

If a pair of charges q, -q is produced at position x0 and q is moving to x1 while 

–q is moving to x2, the charge flowing between electrode n and ground is

x0

I2(t)

I3(t)
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Theorem, total induced charge

If a pair of charges q, -q is produced at position x0 and q is moving 

to x1 while –q is moving to x2, the charge flowing between electrode 

n and ground is

In case q moves to the surface of electrode n (where 𝜓n(x) = Vw) 

and –q to the surface of any other electrode (where 𝜓n(x) is 0), to 

total charge that has been flowing between the electrode and 

ground is equal to q.

If charges are created in pairs it holds that the total charge flowing 

between an electrode and ground is equal to the total charge that 

has arrived at this electrode, once ALL charges have arrived at the 

electrodes.

x

y

Qind
0

q

V0=0

x0

I2(t)

I3(t)

I1(t)

I0(t)

x1qx2

-q-q
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Parallel plate geometry
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Parallel plate geometry
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The Heaviside step function is defined as

In case we have a constant current signal with amplitude I0 starting at t=0 and lasting until t=t1 we have

In case we have a constant current signal with amplitude I0 starting at t=t1 and lasting until t=t2 we have

10/14/24 29

Heaviside step function
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Parallel plate geometry

+q
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Two charges +q, -q moving from y0 to the electrodes with velocities v1

and v2, arriving at the electrodes at times t1 and t2

Induced currents

Total induced charges

In all physics processes, pairs of charges with opposite sign are 

produced at the same position, which results in the fact that the total 

induced charge is equal to the charge that has arrived at the 

electrode, once ALL charges have arrived at the electrodes.

-q
v2

I1(t)

10/14/24
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Parallel plate geometry
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Charge particles passing sensors leave a trail of positive and negative 

charges (electrons/Ions, electrons/holes). Assuming a uniform 

distribution along the track we have two ‘line charges’ + λ, - λ (C/cm), 

moving with velocities v1 and v2, with the last charges arriving at the 

electrode at t1 and t2

The induced current due to the movement of these charges is the sum 

of two ‘triangles’, Q= λd

The total induced charge on electrode 1 is 

-λ
v2

I1(t)

t
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Charge Deposit



A charged particle passing through a piece of 

material will produce a trail of ionization.

Since the individual interactions with the atomic 

electrons are independent, the number of 

primary interactions follows a Poisson 

distribution.

The probability f(E) for transferring an energy E 

to the atomic electron in an interaction is given 

by the Rutherford crossection at large energy 

transfers and by the atomic atomic shell 

structure at low energy transfers. 

Scattering on free electronsExcitation and ionization

L()

Fluctuations of the Energy Loss

33
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Charge deposit in gases

XXXX

The solid lines represent measurements from 

The points represent results from a PAI model

Average distance between clusters

Argon 0.41mm

Neon 0.83mm

Isobutane 0.12mm For single particle detection, internal gain is used in gas detectors

1.5cm Argon MP approx. 67/cm

10/14/24 34
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Transport of electrons and ions in gases

10/14/24



Electrons are completely ‘randomized’ in each collision.

The actual drift velocity v along the electric field is quite 

different from the average velocity u of the electrons i.e. 

→about 100 times smaller.

The velocities v and u are determined by the atomic 

crossection ( )  and the fractional energy loss ()  per 

collision (N is the gas density i.e. number of gas atoms/m3, 

m is the electron mass.):

Because  ( )und ()  show a strong dependence on the 

electron energy in the typical electric fields, the electron 

drift velocity v  shows a strong and complex variation with 

the  applied electric field.

v is depending on E/N: doubling the electric field and 

doubling the gas pressure at the same time results in the 

same electric field.



Ramsauer Effect
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Transport of Electrons in Gases: Drift-velocity



Typical electron drift velocities are v=20-140um/ns (20 000-140 000m/s). The microscopic velocity u is about ca. 100mal larger. 
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Transport of Electrons and Ions in Gases

Typical ion drift velocities are around 1000 times smaller than electron drift velocities.

7.5 kV/cm @ 1 bar

Argon Ions at 2kV/cm → 0.03um/ns

1000x slower than electrons
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GEM Detector



v1~50um/ns

v2~ 100um/ns

Gas Electron Multiplier GEM

Single electrons moving through a GEM hole 
are multiplied in the strong electric field. 

Ions are moving to the top side of the GEM 
or back into the transfer gap. 

Electrons are exiting the holes and move to 
the next amplification stage. 

In the last gap the ‘Induction gap’ the 
electrons are moving to the readout 
electrodes and induce the signal.

The geometry is equivalent to a parallel plate 
chamber with only electrons moving through 
the entire gap.

The signal from a single electron starting in 
the conversion gap is a ‘box’ with a duration 
equivalent to the electron transit time in the 
induction gap approx. 10ns.

v1

x

y

Q1
ind(t)

Q2
ind(t)

I1
ind(t)

I2
ind(t)

d

0

y0

-q

I1(t)

t
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v1~50um/ns

v2~ 100um/ns

Gas Electron Multiplier GEM

The conversion gap above the top GEM is the 
volume where charge particles deposit e+e-
pairs. 

Typical thickness is 3-15mm (2.5m for the 
ALICE TPC !)

For a continuous charge deposit the signal has 
trapezoid shape where the length is dominated 
by the drift time in the conversion gap.

I1(t)

t

60ns

10ns

10ns 10ns50ns
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Parallel field avalanches
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Gas avalanche multiplication

E

Ions

Electrons

At sufficiently high electric fields (100kV/cm) the electrons gain energy in 

excess of the ionization energy → secondary ionzation etc. etc. →

exponential increase → avalanche → Townsend coefficient ⍺

The current induced by these moving electrons is

The ions move from the point of creation in opposite direction from the 

point of creation and the induced current is

The total charge induced by the electrons and the ions is 

x

I1
ind(t)

electrons

Ions

Gain 103: ad=7

Gain 104: ad=9.2

4210/14/24



MICROMEGA

3mm

0.1mm

50um/ns

200um/ns

Electrons movement in the induction gap takes about 0.1mm/v1=0.5ns.

Collecting all electrons from the drift gap takes e.g. 3mm/v1=60ns.

The MICROMEGA electron signal has a length of about 60ns.

Ion movement – e.g. Argon Ions take 130ns for 50kV/cm and 100um gap, 

so the total length of the ions component is around 180ns.

When using ‘fast’ electronics one does not integrate the full charge →

ballistic deficit.

MicroMeshGAS detectors

50-100um, 50kV/cm

3-15mm

10/14/24 43

Single primary electron signal Single primary electron signal
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Wire Chambers

10/14/24



Wire Chamber Signals

Wire with radius (10-25m) in a tube of radius b (1-3cm):

Electric field close to a thin wire (100-300kV/cm). E.g. V0=1000V, a=10m, 

b=10mm, E(a)=150kV/cm 

Electric field is sufficient to accelerate electrons to energies which are sufficient 

to produce secondary ionization → electron avalanche → signal.

10/14/24 45
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Wire Chamber Signals

The electrons are produced very close to the wire, so as a first approximation we can 

assume that the signal is only due to Ntot ions moving from the wire surface to the tube wall:

Ions move with a velocity proportional to the electric field.  

Weighting field of the wire: Remove charge and set wire to Vw while grounding the tube wall.

The induced current is therefore

b
b

a

E Ions

Electrons
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Wire Chamber Signals

b

a

ATLAS muon drift tubes

The signal from a single primary electron has 1/(t+t0) shape with 

a very long tail …

Typically only a small fraction (e.g. 10%) of the total avalanche 

charge is induced during the electronics integration time.

Ballistic deficit. In Micropattern detectors one can integrate all 

the charge → 10 times lower gas gain for the same signal.

3.5us

35us

3.5ms
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ATLAS muon system drift tubes

Tubes of 3cm diameter are assembled into chambers.

The first electrons arriving at the wire determine the 

distance of the track from the wire → drift tube.

The last arriving electrons are originating from 

r=1.5cm, so the last electrons always arrive at the 

same time.

The long signal tail needs dedicated electronics 

filtering to ensure limited deadtime.

80um position resolution over a few thousand m2 area 

with only 330 000 channels !
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Detector with Resistive Elements

10/14/24
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Quasi-static approximation of Maxwell’s equations

Assuming a conductivity sigma of the material we have a current according to

Maxwell’s equations for this situation

The current je(x, t) is an ‘externally impressed’ current, which is related to the ’externally impressed’ charge density ⍴e by

If we assume that this impressed current is only changing slowly we can neglect Faraday’s law and approximate

and we can then write the electric field as the gradient of a potential, an by taking the divergence of the last equation …

10/14/24



Performing the Fourier Transform of the quasi-static equation

we find

So we can write this equation as

This is the Poisson equation with an effective permittivity !

→ We can therefore find the time dependent solutions for a medium with a given conductivity by solving the 

electrostatic Poisson equation in the Fourier domain !

→ Knowing the electrostatic solution for a given permittivity ε(x) we just have to replace ε(x) by ε(x)+σ(x)/iω
and perform the inverse Fourier transform !

51

Quasi-static approximation of Maxwell’s equations

10/14/24
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Extension of the Ramo Shockley theorem

10/14/24
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Theorem, induced current

Applying the delta voltage pulse to the electrode in question we find the 

potential 𝜓n(x, t) and the field En(x, t) from which the induced current can be 

calculated the following way:

→ Ramo-Shockley theorem extension for conducting media

Note that En is not physical potential, since the delta function gives it a 

dimension of V/cm s. 

In case the material is an insulator there is no time dependence of the weighting 

field and we recuperate Ramo’s theorem.
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q

x(t)

Iind
2(t)

Iind
3(t)

Iind
1(t)

q
ε(x, s)

σ(x, s)

Vind
1(t) q

x(t)
q
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Vind
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Vind
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Equivalent circuit, Impedance elements

z11(s)
z22(s)

z33(s)

z13(s)

z23(s)

z12(s)

In case the electrodes are not insulated 

but  connected with discrete linear 

impedance components we can consider 

them as part of the medium and we 

therefore just have to add these 

elements in the equivalent circuit. 
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https://cds.cern.ch/record/2890572

Djunes Janssens
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Djunes Janssens
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𝑔𝑎𝑠 𝑔𝑎𝑝 𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟

V

Micromegas toy-model example

𝑔𝑎𝑠 𝑔𝑎𝑝 𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟

𝑅 𝑙𝑎𝑦𝑒𝑟

V

The time-dependent weighting potential ψi(𝐱, t) is comprised of a static prompt and a dynamic delayed

component:

Static weighting potential of a readout strip Dynamic weighting potential of a readout strip with resistive layer

Djunes Janssens
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Resistive strip bulk Micromegas

58

Calculated dynamic weighting potential
While the previous slide the embedded readout electrodes were 

beneath a thin resistive layer, the ATLAS-type MM, used in the 

NSW upgrade, instead features perpendicular resistive strips over 

a dielectric foil.

Here we use a 2D strip readout to capture the delayed 

component coming from the resistive strips.

T. Alexopoulos, et al., Nucl. Instrum. Meth. A 640 (2011) 110.

M. Byszewski and J. Wotschack, JINST 7 C02060 (2011).

Djunes Janssens
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Resistive strip bulk Micromegas

59

APV25

Electrode 5 Electrode 6

After having calculated the signals induced on the strip 
electrodes, the electronics with which the detector is read 
out needs to be taken into account.
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𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟

𝑚𝑒𝑠ℎ

𝑥-𝑠𝑡𝑟𝑖𝑝𝑠

𝑦-𝑠𝑡𝑟𝑖𝑝

𝑟𝑒𝑔𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑚𝑢𝑜𝑛𝑠
𝜇

◆ For the comparison we look at the average induced current response of neighboring strips. This averaging is performed 
over muon events positioned between the leading and the next-to-leading strip.

𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑒 𝑠𝑡𝑟𝑖𝑝
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HV layer

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒 𝑙𝑎𝑦𝑒𝑟 (0.3 MΩ/□)

𝑟𝑒𝑎𝑑𝑜𝑢𝑡 𝑠𝑡𝑟𝑖𝑝

𝜋

The dynamic weighting potential was calculated using COMSOL and then imported into Garfield++ for 
the induced signal calculations. Given a graphite layers with O(100 kΩ/□), the signal induced by electrons 
remains unaffected.

10 kΩ/□

𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒 𝑙𝑎𝑦𝑒𝑟 (0.3 MΩ/□)

10 kΩ/□

Consistent with G. Battistoni et al., NIM in Physics Research 202 (1982) 459.

𝑧

𝑦
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Signal formation in a MicroCAT detector
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The MicroCAT’s two-dimensional interpolating readout structure allows for a reduced number of 
electronic readout channels without loss of spatial resolution.

This resistive readout concept has recently enjoyed renewed interest with the development of a DC-
Coupled LGAD device: arXiv:2204.07226 [physics.ins-det].

F. Bartol et al. J. Phys. III France, 6 (1996), p. 337

A. Sarvestani et al., Nucl. Instrum. Meth. A 410 (1998) 238–258

H. Wagner et al. Nucl. Instrum. Meth. A 482 (2002) 334–346

Weighting potential map for one 
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Comparison of the distortion on the boarder
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MicroCAT resistive position interpolation readout
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During production, the resistivity can fluctuate on the surface of the resistive layer. This could make the timing 
response or reconstruction capability of your detector non-uniform over the active area.

R. Arcidiacono et al., arXiv:2211.13809v1 [physics.ins-det]

Correction mapMap of non-uniform resistivity in one readout cell
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Summary

The movement of charges induces signals on metal electrodes.

The signal shapes are therefore determined by the dynamics of the charges inside the detector i.e. by the 

movement of electrons and Ions in gaseous detectors.

These signals can be calculated by means of weighting potentials and weighting fields that are solutions of 

the Laplace equation.

The formalism can be extended to detectors containing resistive elements by use of time dependent 

weighting fields.

Signals in GEM detectors are mainly due to the movement of the electrons in the induction gap.

Signals in Micromegas detectors are characterized by a short electron ‘spike’ and a longer ‘flat’ ion tail.

Signals in wire chambers are mainly due to the movement of ions and are characterize by a long 

hyperbolic 1/(t+t0) tail.


