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Electrostatics

Potential for a given charge distribution

o) = [ PX) par B(x) = —Vi(x)

dmey ) |x— x|

Charge distribution with boundary condition, Poisson equation:

Aplo) = =22 g leca = a0

In regions of space without charge and given boundary, Laplace equation:

Ap(x) =0  p(x)|x=a = pa(x)

Gauss Law:



Uniqueness

pa(X) Let's assume we have two solutions of the same Poisson equation
Api(x) = —p(x)/e0 Apz(x) = —p(x)/e0
P1(X)x=a = p2(x)[x=a = pa(x)
The difference between these two solutions must satisfy the Laplace equation

p(x) = p1(x) —pa(x)  Ap(x) =0
In general it holds that

e R

X V (p(x)Ve(x)) = (Vo(x))* + ¢ (x) Ap(x)

Using the fact that Ap(x) =0 and applying Gauss’ theorem we have

palx) jé (%) Vip(x)dA = fv (Vio(x))2d%

In case ¥1 = ¥2 on the surface we have ¢ = 0 on the surface and the left side
vanishes. That means that the right hand side must also vanish and we have

Vo(x) =0 —  Vi(x) = Vpa(x)

Defining the potential ¥1(x) on the entire surface therefore uniquely defines the

electric field in the volume. The same holds in case we define Vip,dA on the

entire surface. Evidently the unigueness theorem also holds in case we define ¢1(x)
X on a fraction of the surface and V¢1dA on the rest of the surface.

i clal s =
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Conductors

In conducting materials, charge will move as long as there is an electric field
present.

A static situation is only achieved once the electric field inside the conductor
IS zero and therefore also the charge density inside the conductor is zero. All
the charge is sitting on the surface of the conductor.

The electric field on the surface of the conductor must be perpendicular to
the conductor, since a component parallel to the conductor would again
move the charge.

Moving a test charge across the surface of the conductor one crosses the
field lines perpendicular and no work is performed. A conductor surface is
therefore and equipotential surface.

Since the electric field inside the conductor is zero and the field-lines are
perpendicular to the surface, we can use Gauss law to relate the surface
charge density to the field on the surface:

1
FA=—0cdA — o=c¢ol
€0

- The charge density (C/m?) at a given point on the conductor surface is
equal to g, times the electric field in this point.



Induced charge on metal electrodes

Poisson equation:

Ap(x) = —p(x)/e0  ¢X)|x=a, = Va

The charge on the electrode is given by the integral of
the electric field over the surface of the electrode

p(X)
P(x) Qn = —0 j& Vo(x)dA
A

n
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The Principle of Signal Induction on Metal
Electrodes by Moving Charges
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Induced charge on an infinite plane

A point charge g at a distance y’ above a grounded metal plate ‘induces’ a surface charge.
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Induced charge on an infinite plane

In order to find the charge induced on an electrode we therefore have to

a)

b)

c)

Solve the Poisson equation with boundary condition that ¢=0 on the conductor
surface.

Calculate the electric field E on the surface of the conductor

Integrate o=e,E over the electrode surface

+.q A
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Induced charge on an infinite plane

The solution for the field of a point charge in front of a metal plate is equal to the solution of the
charge together with a (negative) mirror charge at y=-y'.

A

yt .
0@ ¢ +q C (X, y’)

E

v

- '\
The potential for the above problem is therefore: q ‘ (X » 7Y )

_ 4 1 . q 1
dmco \f(z =)+ (y—y)2 + (2 —2)2  Ameo J(x — ') + (y +y)* + (2 = 2)°

o(z,y,2)
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Induced charge on an infinite plane

We therefore find a surface charge density of

dp q y'

) Gy T e (g s o

And therefore a total induced charge of

Qe :/ / o(x,y)dzdy = —q

1@ "

12



10/14/24

Induced charge on an infinite plane

Moving the point charge closer to the metal plate, the surface charge distribution becomes more peaked
The total induced charge is however always equal to —(,
The charge is just rearranged on the surface and no current is flowing between the plate and ground..

' & q

® q

Charge at position x'=0, y’, Z’=0

q Y ' oo poo
U(may) - = 3/2 and - / / 0-(337 y)dib‘dy = —q

13



Induced charge on strip electrode

y A
If we segment the grounded metal plate and q ‘ (X', y) The charge induced on the individual strips is now
if we ground the individual strips, the surface ’ depending on the position (x’, y’) of the charge.
charge density doesn’t change with respect
to the continuous metal plate.
Oy q Y’
'V\://Z 'W/2 0'((13’ y) = —50—|y:0 —_———

w/2 — 2! 27!
Q™M (z',y") / / (2 ydfcdy——% (arctanw2 ’33 —arctanw;—Im)

Y Y

w/2

10/14/24
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Induced current on strip electrode

Y ‘yo

If the charge is moving with a velocity q l While the charge is moving there is a current flowing

\Y between the strip and ground.

v towards the strip we have

- The movement of the charge induces a current.
y'(t) = —vt

'V\,//Z —— arctan —

, 2
_W|/2 and(y/) — 7:7 21;,

l lind(t)
QML) = qz arctan — t <0
s 2ut
: dQ™4(t) 4w
Ima(t) = — = t<0
t) dt = (w? + 4v2t?) ! <

10/14/24
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Reciprocity theorem

Two arbitrary charge distributions p(x) and p(x)

0(X) p(X)

W= et = [ [EE e = [ oot

[ eedts = [ et

This is simply a result of the fact that the Coulomb force depends only on the relative distance of the charges and
not on absolute position in space.

The expressions can be interpreted as the work needed to move one charge distribution in the electric field of the
other charge distribution, actio = reactio

Sounds like a trivial statement, but has very practical consequences.

16



Example: two point charges

Q,

X1,¥1,Z
‘( 1:Y1:Z1)

Reciprocity theorem

p(x) = Q16(x —x1) ¢(x)

- Correct but not really useful

10/14/24

v

Q1

- 47T€0‘X—X1|

Q1Q2 B Q1Q2

dmeglxy — x| dmeglxs — x|

[ et = [ pxpeods

v

Q2

- 47T€0|X — XQ‘
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Grounded metal electrode of arbitrary shape
Point charge q at (X, y’, Z')

A 0
y ® (x,y,7)

V=0

Reciprocity [o0ed%s = [ ptxptoita

»
|

p(x) = q0(x = x) + pourf(X)

X

(%) |sury = 0

/ Py (Jp(x)d0z = / 100(x = %) + powr (KP(X)

0 = ¢p(x)+ Vo / psurg (X)d’

0 = gp(x
ind _i— !

10/14/24

v

E(X) — ﬁsurf (X) E(X)Lsurf =W

-> Knowing the potential for the electrode at voltage V, in
absence of any external charges we can directly
calculate the charge induced on the grounded electrode
in presence of a point charge !!

18
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Induced charge on a grounded sphere

19



o Theorem, induced charge

The charge induced on a grounded conducting electrode by a
point charge g at position x can be calculated the following way:

Remove the point charge, put the electrode in question to potential
V,, while keeping all other electrodes at ground potential.

This defines the weighting potential y,(x) of this electrode and the
induced charge is

ind __ _i
Qn - Vw ’l,bn(X)

We therefore do not have to solve the Poisson equation for a point
charge but we just have to solve the Laplace equation for the
given boundary conditions on the electrodes.

For detectors with long electrode, like wire chambers, RPCs,
silicon strip detectors, we only have to solve the 2D Laplace
equation instead of the 3D Poisson equation.

Specifically for numeric field calculations this is much easier and
numerically stable.

10/14/24 20
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Theorem, sum of induced charges

The sum of all induced charges is defined by the sum of all
weighting potentials

N ‘ q N
Zsznd R Z Un(x)
n=0 W n=0

This sum is related to the situation where all electrodes are put
to voltage V,,. This will however result in a constant potential V,,
in the entire volume between the electrodes, so we have

N

N
Do) =V > Q=g
n=0

n=0

The sum of all charges induced by a charge g is equal to —q, in
case the geometry is such that one electrode encloses all
others.

21
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Qind0

Theorem, induced current

The current induced on a grounded conducting electrode by a
point charge g moving along a trajectory x(t) can be
calculated the following way:

ind x
@) _ @ gy, ee))t) = -

L) = dt v,

E, (x(t))x(t)
This weighting field E(x) is given by

En (X) - —Vlbn (X)

- Ramo-Shockley theorem

Since the sum of all induced charges is constant and equal to
—Q at any time, the sum of all induced currents is zero at any
time, in case there is one electrode enclosing all the others.

N

» Irt) =0

n=0

22
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Ramo Shockley theorem (Reciprocity theorem)

F16. 1. Schematic representation of conductors
and currents,

Currents to Conductors Induced by a Moving Point Charge

W. SHOCKLEY
Bell Telephone Laboratories, Inc., New York, N. Y.

(Received May 14, 1938)

General expressions are derived for the currents which flow in the external circuit connecting
a system of conductors when a point charge is moving among the conductors. The results are
applied to obtain explicit expressions for several cases of practical interest.

584 Proceedings of the I.R.E. September, 1939

Currents Induced by Electron Motion’
SIMON RAMOT, ASSOCIATE MEMBER, I.R.E.

Summary—A method is given for computing the instantaneous METHOD OF COMPUTATION
current induced in neighboring conductors by a given specified motion . . .
of electrons. The method is based on the repeated use of a simple The method is based on the following equation,

equation giving the current due to a single electron’s movement and is  whose derivation is i .
believed to be simpler than methods previously described. tion is given later

23
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+0 N

Positive Signal l, I(t)

+Q

Negative Signal l I(t)

Signal polarity

The definition of the induced current

ind _ sznd(t)
w=-"g

defines that the current arrow points away from the electrode.

A positive current refers to a reduction of charge on the electrode.

The signal is positive if:
Positive charge is moving from electrode to ground or
Negative charge is moving from ground to the electrode

The signal is negative if:
Negative charge is moving from electrode to ground or
Positive charge is moving from ground to the electrode

24



- Theorem, total induced charge
deo

The total charge flowing between the electrode and ground when the charge q
IS moving from point X,=x(t,) to x;=X(t;)

t

0, = /t 1 1ind(¢)dt = _Vi t lEn(x(t)))’{(t)dt = Vi [thn(X1) = ¥n(x0)]

This charge is independent of the path between x, and x,.

If a pair of charges q, -q is produced at position X, and g is moving to x; while
—( is moving to X,, the charge flowing between electrode n and ground is

11 )
Q, = / Iimd(t)dt
q

10/14/24 25
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Theorem, total induced charge

If a pair of charges q, -q is produced at position X, and g is moving
to x, while —g is moving to x,, the charge flowing between electrode
n and ground is

t1
Q, = / I'md(t)dt
q

In case g moves to the surface of electrode n (where . (x) =V,)
and —q to the surface of any other electrode (where ,(x) is 0), to
total charge that has been flowing between the electrode and
ground is equal to q.

If charges are created in pairs it holds that the total charge flowing
between an electrode and ground is equal to the total charge that

has arrived at this electrode, once ALL charges have arrived at the
electrodes.

26
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Parallel plate geometry

A y A y

v, I 1,ind(t)
2 d 2 d

innd

(X, y)

+q ®

ind
0 0 Q1
Vw X | X | l |1ind(t) X

Induced charge

y Yaly) = V) ) =~y iw) =~ (1-7)
Vi .
Fi(y) = 2 Ealy) = = Pi(y) = — L ay) =~

Sum of the weighting potentials Sum of induced charges

V1(y) + V2(y) = Vi QU + QY = —q

27



Parallel plate geometry

Y, Y, Y,
I| md(t) Vw
d L d J—— 2 d 2
N innd
Yo 4 IV ““““““ | Y. By I Va2 B, l

Weighting field, electrode 2

dy(t
y(t) = yo — vt %):—v U<t<il)—0 o
dy _ v _ Y Es(y) = ——
I(t) = —ViEl(y(t))d—i/ =2 Ei(y) = — _ d
N p 1,(D)
__ 1 @ _ _ Y
L) = - B(y(t) 5 =~
(%
I(t) + In(t) = 0 1
Total induced charge on electrode 1
Yo/v
e :/ Li(t)dt = =V [41(0) — 91 (yo)] = QEO >
0 Yo t

10/14/24 28



Heaviside step function

The Heaviside step function is defined as

0 fort<O
@(t)_{ ori <

1 fort>0

v

t=0

In case we have a constant current signal with amplitude |, starting at t=0 and lasting until t=t, we have

A

lo

v

t=0 t=t,

In case we have a constant current signal with amplitude |, starting at t=t; and lasting until t=t, we have

A

lo

I(t) =1 [O(ta — t) — O(t; — t)]

v

t=0 t=t, t=t,
10/14/24 29



A

Yot +(

0
| l |, ind(t) X

1,(t)

Parallel plate geometry

I 1,ind(t)
d

e, QM)
® -

Q,"(t)

10/14/24

v

Two charges +q, -q moving from y, to the electrodes with velocities v,
and v,, arriving at the electrodes at times t, and t,

PO IO ot |
V1 V2
Induced currents
U1 U2
Lh(t)=q— Ot —t) +q—_O(t2—t)  L(t)=-L()

Ir(t) = =L (1)

Total induced charges

nd jo I, (t)dt

[11(0) — Y1 (yo)] — —— [¥1(d) — ¥1(yo)]

4 4

Vi Vi
= g

In all physics processes, pairs of charges with opposite sign are

produced at the same position, which results in the fact that the total

induced charge is equal to the charge that has arrived at the

electrode, once ALL charges have arrived at the electrodes.

30



Parallel plate geometry

y A
T _ Charge particles passing sensors leave a trail of positive and negative
I |2'nd(t) charges (electrons/lons, electrons/holes). Assuming a uniform
d distribution along the track we have two ‘line charges’ + A, - A (C/cm),
Q,nd(t) moving with velocities v, and v,, with the last charges arriving at the
I Vo 2 electrode at t;, and t,

) — -A g g
Vll Q,nd(t) th = — to = —
1 U1 ()

o)
l | ind(t) X The induced current due to the movement of these charges is the sum
1 of two ‘triangles’, Q= Ad

N L) = A (1 _ ti) Ot — t1) + vy (1 - ti) Ot — t)

1 2

1,(t) = g(l—ti> (—)(t—t1)+tg (1—%) O(t — t2)

1 2

The total induced charge on electrode 1 is

nd, / I (t)dt
0

_ M M
~> -2 2

da 4y = M

m (20) = Q

10/14/24 31
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Charge Deposit

32



Fluctuations of the Energy Loss

A charged particle passing through a piece of
material will produce a trail of ionization.

Since the individual interactions with the atomic
electrons are independent, the number of
primary interactions follows a Poisson
distribution.

The probability f(E) for transferring an energy E
to the atomic electron in an interaction is given
by the Rutherford crossection at large energy
transfers and by the atomic atomic shell
structure at low energy transfers.

Landau distribution L(x) according to

1 o +ico
L(x) = ﬁl——im exp [sx + sIn 5] ds (A.1)
= %f exp(—m/21t)cos(tx + t Inf)dt (A2)
0
= lf exp [—tx — ¢t Int] sin(xt)dt (A.3)
mJo

Expression (A.2) is well suited for evaluation for x < 0, while eq. (A.3) is well suited for evaluation
for x > 0. For large values of x the Landau distribution approximates to

1
L@~ = (A.4)

E NaypZakD
r=—+C,—1-Inmn = —Arery
e ' Ae

o

Ine=In +23?

FaT

10/14/24

x=0 x=D Excitation and ionization Scattering on free electrons
f(E)
E A E-A ' 1 T T
|
2l |
X > 5" | | 1
o I
= ‘ 2.4
3¢ . S g : do N 2nZ7e A
i s : I dE'  m.gFPE?
2 L | i _
X > S Excitations :mumm due |
> . o;‘:':::unt ludlstul coll{sions v |
= i !
000K > 3 i l ' En
2 w9 s F 10wy | TORTIEIGRY B b | -
(t ’ | l' |close collisiony
|E; |
X——— kst - ) 1§ g |
0001 Qot ' [+ 1] | o 100
Minimum ionization energy Energy tronsfer (keV)
> Convolution /
0.18F
0.16—
0.14
0.12
Eyvip =me(xp+1-C +Inn) = ne(0.241nm) 0.1
0.08—
402 NapZsokD 3
AFpwaa = 4.027 = 0.06F
A 0.04f—
] 0.02[—
AFpw B 4052 E
E_‘up 0.24Inn 4
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primary clusters/cm

Charge deposit in gases

methane isobutane
| E60F E 200 | 1
50 - | E E T T IT T T T T T T T T
; § 50 El?s :
“ | :E" " %m i ' 7 (3 GeVic) T
| E E2s
30 — —— 2
‘ 30 100 i i
i | “%cscsssesessasssssses 1
20 75 | 1
| 20 1
‘ 50 1
10 ‘ 1 u
| 10 2 1
‘ 1
1
1 2 3 4 5 6 7 LT 2 3 4 5 6 7 ’ 3 4 5 6 7 :
E i, neon . Y T I : |
E K : e (3 GeV/c)
% gmr I
: : |
E s E® .
= R | 1
e . - sasses !
10 Sssstatessnits ' |
30 1
s | 20 :
10 i
1
L 2 3 4 B 6 7 0 2 3 r 5 6 7 !
Y Y
The solid lines represent measurements from ' ' ' ' -
0 100 200 300 400
[27] F. Rieke, W. Prepejchal, PhyS. Rev. A 6 (1972) 1507. n (electrons)

The points represent results from a PAI model

Average distance between clusters
Argon 0.41mm
Neon 0.83mm
Isobutane 0.12mm

1.5cm Argon MP approx. 67/cm

For single particle detection, internal gain is used in gas detectors
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Transport of electrons and ions in gases

35
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Transport of Electrons in Gases: Drift-velocity

Electrons are completely ‘randomized’ in each collision.
The actual drift velocity v along the electric field is quite
different from the average velocity u of the electrons i.e.

—>about 100 times smaller.

The velocities v and u are determined by the atomic
crossection o(¢ ) and the fractional energy loss A(e) per
collision (N is the gas density i.e. number of gas atoms/m?,

m is the electron mass.):

‘\/mw\f ”\/

Because o(e)und A(e) show a strong dependence on the
electron energy in the typical electric fields, the electron
drift velocity v shows a strong and complex variation with

the applied electric field.

v is depending on E/N: doubling the electric field and
doubling the gas pressure at the same time results in the

same electric field.

0"

107"

107!

107"

1072

107

10-*

10°°

T It

o {emd)

I'I||

Ramsauer Effect

CH, I

_T‘_"l"_l'_"r'l-:

B Ar
b=
_1]_1 RN R T A I N N R T O B A IIJ_
0.001 0.01 01 1 10
(a) e leV)
_T [ A AN I [ A N I N B B I
A ’
] [ A NN S T A S I 0 R ||_
0.001 0.01 0.1 1 10
(b)

£ (eV)
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Transport of Electrons and lons in Gases

Typical electron drift velocities are v=20-140um/ns (20 000-140 000m/s). The microscopic velocity u is about ca. 100mal larger.

1 ' ' ' ' 12 120
Drift velocitg CF Drift velocit):' | I |
760 mm 20°C 4 A-CO,
10| 760 mm 20°C | 2 100 AN
0 = \\ ARGON-METHANE
1 . =
— / 81 7 V - 30 \\ V
s CO, g E \\\\\
g E/ 6 \;j; 60 \\_\—\‘—h:n-’nn
3 \ __,_____“_h_-_-zu-e;u
5 = 40-60
4 | 40 \ \E:mw
A — ” \ T T———— L
Xe— | 2 20 90-i0
0 0 20|OD 40b0 GOIUO 80‘()0 10000 0 | | ! ! ﬂ
E (Vicm) 0 2000 4000 6000 8000 10000 5 " 2 3 4 5
E (Vicm) E (kV/cm)
Typical ion drift velocities are around 1000 times smaller than electron drift velocities.
[
* 80
5o ~ G I Mobilit
» as on ooty
5w 1= ’/ =3 (cszfl s
o A" B el / j He He' 10.4(1102.310
2 /,, = e Ne. Ao Argon lons at 2kV/cm = 0.03um/ns
. o LT Kr K 0.960.09 1000x slower than electrons
yo , o > Xe Xe 0.57+0.05
'3 & - '?‘, # Average over several measurements
. // i
“ s B Yy - -,
' A ek ‘at low fields (u o E) and at high fields (« = V/E)
/ A Pressure in Torr
e O o%
z o352  a4w  s0823 [
o 860 00,724 *287
872,72 0829
el 1 1 1
! & &8 w 20 w 60 &0 100 200 4o 690 000
Elp —w A
7.5kV/icm @ 1 bar om Torr
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GEM Detector

38



Fig. 2: Electric field lines in a GEM detector
0
){ charged particle

driftcathode | - |

conversion gap
v;~50um/ns 3enm

GEM 1 m = om FLE - - -
GEM 2 = = wm ! EE= - :mm
GEM 3 m = == " i - - =-m- 1':;

readout PCB | o )

/ ‘ spacer
V,~ 100um/ns
10/14/24

HV ’
* Cathode window i

. 1
ione,

el
Gas atom <esr
" J4° lonization

GEM foil / o electron
’—H\

Readout plane N

Vi I - innd(t)
Yot
Q,M(t)
l |1ind(t) X
ot

v

10ns

Gas Electron Multiplier GEM

Single electrons moving through a GEM hole
are multiplied in the strong electric field.

lons are moving to the top side of the GEM
or back into the transfer gap.

Electrons are exiting the holes and move to
the next amplification stage.

In the last gap the ‘Induction gap’ the
electrons are moving to the readout
electrodes and induce the signal.

The geometry is equivalent to a parallel plate
chamber with only electrons moving through
the entire gap.

The signal from a single electron starting in
the conversion gap is a ‘box’ with a duration
equivalent to the electron transit time in the
induction gap approx. 10ns.
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Gas Electron Multiplier GEM

driftcat hode | ' |
CONYersion gap
v;~50um/ns aom  60NS
GEM 1 m = cosess o = 5 mm = - - - ] 1
GEMZ= = L ---E-- e
bk B imm

Ly M 10NnS

v,~ 100um/ns

v

I |
10n 50ns 10ns t

The conversion gap above the top GEM is the
volume where charge particles deposit e+e-
pairs.

Typical thickness is 3-15mm (2.5m for the
ALICE TPC)

For a continuous charge deposit the signal has
trapezoid shape where the length is dominated
by the drift time in the conversion gap.
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Parallel field avalanches
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Gas avalanche multiplication

At sufficiently high electric fields (100kV/cm) the electrons gain energy in
excess of the ionization energy - secondary ionzation etc. etc. >
exponential increase - avalanche - Townsend coefficient a

No(z) =™ N.(t) = e™"'0 (d/v, — 1) § L lons

The current induced by these moving electrons is E

| eov Electrons

1(t) = == Ne(?)
ind
The ions move from the point of creation in opposite direction from the Ll Iy (t)
point of creation and the induced current is
ax n €oV1 ax

ny(x)de = ae®*dx A1z, t)de = ——gae O(x/vr + z/ve — t) — O(x/ve — t)]dx Gain 103 ad=7

Gain 104 ad=9.2

d
Imd(t) = /0 A1z, t)dz = _—e(’;f [(ead — eaverrt/ etviNQ(d /v, + dfv; — t) — (e — e**")O(d/v. — t)}

I(t)
150}

The total charge induced by the electrons and the ions is

‘ d/ve ‘ eozd -1
QU = f 17M(t)dt = —eq . | | wo| | electrons
Od/ da Qénd + QzInd _ _eoead
vr (87
nd ind e““(ad—1)+1
?n, :L Ién (t)dt = —€o ad 50
lons
Q. e — 1 1 Qe 1 d
= ~ —— ~ — fi @ 1
s (ad—1e*+1  ad—1 Qc+Q; ad € > ' ' e -t



MicroMeshGAS detectors

~ Drift plane
4 micromesh

MICROMEGA

N E e 3mm 50um/ns . 3-15mm
5o fueomesn _____@_--«'_"'_i
Pillar $ ¢ _om0imm_ 200um/ns _ A4 50-100um, 50kV/cm

Paaroeis

Electrons movement in the induction gap takes about 0.1mm/v,=0.5ns.

Collecting all electrons from the drift gap takes e.g. 3mm/v,=60ns.

The MICROMEGA electron signal has a length of about 60ns.

Single primary electron signal w Single primary electron signal
o lon movement — e.g. Argon lons take 130ns for 50kV/cm and 100um gap,
/ so the total length of the ions component is around 180ns.
g When using ‘fast’ electronics one does not integrate the full charge -
. W ballistic deficit.
10/14/24
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Wire Chambers
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Wire Chamber Signals

Wire with radius (10-25um) in a tube of radius b (1-3cm):

v Vo1
P = gy MY B g

Electric field close to a thin wire (100-300kV/cm). E.g. V,=1000V, a=10um,
b=10mm, E(a)=150kV/cm

Electric field is sufficient to accelerate electrons to energies which are sufficient
to produce secondary ionization - electron avalanche - signal.
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lons

Electrons
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Wire Chamber Signals

The electrons are produced very close to the wire, so as a first approximation we can
assume that the signal is only due to N, ions moving from the wire surface to the tube wall:

1% Vo1
olr) = In(a/b) In(r/b)  Bp(r) = m(b/a) 7

lons move with a velocity proportional to the electric field. v(r) = pE(r)

dti(tt) :’“‘m(‘b//a)r(lt) = rt)=ay/1+t/ty  0<t<tma

a’In(b/a) b
- max - e 1
to 2uV ! o (a2 )

Weighting field of the wire: Remove charge and set wire to V,, while grounding the tube wall.

_ _VYu In(r/b) _ W
) ==/ B0 = /e
The induced current is therefore
ind o _Ntoteo d’f(t) _ Ntoteo 1
L) = - = B O = =~ oht/a) 15 40
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in Nioteo
I d(t) - = V.

Qi = [ iy

Q) _ Qi)

Ey [r(t)]

Qtot —Ntoteo a 211’1(b/&

10/14/24

Wire Chamber Signals

Nioteo 1

~2In(b/a) t+ to

Nioteo

= /e " (”%)

)m(y+%)

The signal from a single primary electron has 1/(t+t;) shape with

a very long tail ...

ity
10

o8

06

04

a2

ATLAS muon drift tubes

Vb...voltage on the wire ~ 3500V
a...wire radius = 25um
b...tube radius = 1.46cm

to = 1lns tmaz = 3.73Mmsec

M TR
50

Ll
100

P T S T T T S T T S s t{i‘lE_:I
150 200 250 300

Typically only a small fraction (e.g. 10%) of the total avalanche
charge is induced during the electronics integration time.

Ballistic deficit. In Micropattern detectors one can integrate all
the charge - 10 times lower gas gain for the same signal.

aftyatot 3 . 5 us
10
08
06F
04t
02
I I I I I I I
0 500 1000 1500 2000 2500 3000 3500
Qjtyaist 3 5 u S
10
naf
08}
0.4 K//‘
02
I I I I I I I
0 5000 10000 15000 20000 25000 30000 35000
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ATLAS muon system drift tubes

Resistive plate chambers

MDT chambers

Tubes of 3cm diameter are assembled into chambers.

| TDC—)!

The first electrons arriving at the wire determine the
distance of the track from the wire = drift tube.

The last arriving electrons are originating from
r=1.5cm, so the last electrons always arrive at the
same time.

The long signal tail needs dedicated electronics
filtering to ensure limited deadtime.

20 f‘ |
80um position resolution over a few thousand m? area 0300 0000500600 7000960
with only 330 000 channels ! Time Ins]

Multilayer
In-plane alignment
~ Longitudinal beam

10/14/24
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Detector with Resistive Elements
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Quasi-static approximation of Maxwell’s equations

Assuming a conductivity sigma of the material we have a current according to

J(x,t) = o(x)E(x,1)
Maxwell's equations for this situation

VD(x,t) = p(xt) D(x1)=c(x)Ex,1)
VB(x,t) = 0 B(x,t) = p(x)H(x,t)
0B(x,t)
E = -
V x E(x,t) Py
D
V x H(x,t) = J g:’t) +je(x,t) + o(x)E(x,1)
The current j (X, t) is an ‘externally impressed’ current, which is related to the 'externally impressed’ charge density p, by
) Ope(x,1)
e(X,t) = ———F—
Vie(x,1) Y
If we assume that this impressed current is only changing slowly we can neglect Faraday’s law and approximate
V x E(x,t) ~ 0 E(x,t) = —Vp(x,t)

and we can then write the electric field as the gradient of a potential, an by taking the divergence of the last equation ...

V(V x H(x,1)) = WDa—iX’t) 4 Vje(x, ) + V[o(X)E(x, )] = 0
\ 5(X)Vaw(x’t) +o(x)Ve(x,t)| = _Ope(x,t)

ot
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Quasi-static approximation of Maxwell’s equations

Performing the Fourier Transform of the quasi-static equation

dp(x,t)
ot

 Ope(x,t)

V |e(x)V o

+o(x)Ve(x,t)| =
we find

V [e(z) Viwp(x,w) + 0(x) Vi (x,w)] = —iwpe (X, w)
V(e(z) + o(x)/iw) Vo(x,w)] = —pe(x,w)
So we can write this equation as
V [eef(X)Vip(x,w)] = —pe(x, w) Eoff(X) = () + o(x) /iw p(x,w) = =V [e(x) Vi (x,w)]

This is the Poisson equation with an effective permittivity !

[1] H.A. Haus, J.R. Melcher, Electromagentic Fields and
Energy, Prentice-Hall, Englewood Cliffs, NJ, 1989.

NH, NUCLEAR
T mmuuzwrs
IN PHYSICS

RESEARCH
ELSEVIER Nuclear Instruments and Methods in Physics Research A 478 (2002) 444447 SechonA

The quasi-static electromagnetic approximation
for weakly conducting media *

Th. Heubrandtner, B. Schnizer*

Institut fur Theoretische Physik, Technische Universitit Graz, Petersgrasse 16, 8010 Graz, Austria

pe(x,w) = =V [eog(x) Voo (x,w)]

- We can therefore find the time dependent solutions for a medium with a given conductivity by solving the

electrostatic Poisson equation in the Fourier domain !

- Knowing the electrostatic solution for a given permittivity £(x) we just have to replace €(x) by £(xX)+o(X)/iw

and perform the inverse Fourier transform !
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Extension of the Ramo Shockley theorem

2 Available online at www.sciencedirect.com NUCLEAR
k- (i . INSTRUMENTS
s scnenceCDmECT & METHODS
IN PHYSICS
. RESEARCH
Section A

ELSEVIER Nuclear Instruments and Methods in Physics Research A 535 (2004) 287-293
www.elsevier.com/locate/nima

Extended theorems for signal induction
in particle detectors VCI 2004

W. Riegler™*

CERN, PH Division, Rt. De Meyrin, Geneva 23CH-1211, Switzerland
Available online 13 August 2004

Abstract

Most particle detectors are based on the principle that charged particles leave a trail of ionization in the detector and
that the movement of these charges in an electric field induces signals on the detector electrodes. Assuming detector
elements that are insulating and electrodes with infinite conductivity one can calculate the signals with an electrostatic
approximation using the so-called ‘Ramo theorem’. This is the standard way for the calculation of signals e.g. in wire
chambers and silicon detectors. In case the detectors contain resistive elements, which is, e.g. the case in resistive plate
chambers or underdepleted silicon detectors, the time dependence of the signals is not only given by the movement of
the charges but also by the time-dependent reaction of the detector materials. Using the quasistatic approximation of
Maxwell’s equations we present an extended formalism that allows the calculation of induced signals for detectors with
general materials by time dependent weighting fields. As examples, we will discuss the signals in resistive plate chambers

and underdepleted silicon detectors.
© 2004 Elsevier B.V. All rights reserved.
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Qind0

Theorem, induced current

Applying the delta voltage pulse to the electrode in question we find the
potential Y ,(x, t) and the field E,(x, t) from which the induced current can be

calculated the following way:

I1(6) = =sQi'(s) = 1 [ vl shpulo o)’

pe(X,t) = qd(x — x1(t))

1emt(t) = — L t E,(x1(t"),t —t")xq(t")dt’
Vi Jo

- Ramo-Shockley theorem extension for conducting media

Note that E,, is not physical potential, since the delta function gives it a
dimension of V/cm s.

In case the material is an insulator there is no time dependence of the weighting
field and we recuperate Ramo’s theorem.

En(x,t) = Eno(x)0(t — t')  I€H(t) = —ViEno(xl(t))}'cl (t)dt

w
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Equivalent circuit, Impedance elements

2(t)

z(s
lym(t)
: Viind(t)
In case the electrodes are not insulated
but connected with discrete linear
Impedance components we can consider
them as part of the medium and we
therefore just have to add these
elements in the equivalent circuit.

Znm(s) = —ymi(s) n#Em  Zpp(s)
s
Ymn (S) v ﬁ Eeff(x,5) Vb (x,5)dA

|2ind(t)

Vzind (t)
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Micromegas toy-model example

The time-dependent weighting potential y,(x,t) is comprised of a static prompt and a dynamic
component:

Static weighting potential of a readout strip Dynamic weighting potential of a readout strip with resistive layer
Time=0ns |
mm T T T T T V mim T T T T T V
| =yl | o097 .l = P 1d (o 1 =097
3t W:‘(Xs l‘) - lp,; (X) 1 |l 002 3l l,k,.;(X, l‘) = l,bl. (X) + (X, 1) 1 Boas
25¢ - 0.87 2.5+¢ - 0.87
0.82 0.82
2r gas gap cathode . 0.77 2r gas gap cathode R iayer - 0.77
L5 1 0.72 1.5F 4 P+ 0.72
4 0.67 10.67
Lr 1 t10.62 1r 1 t10.62
0.5F - 10.57 05+ ] 1057
of Z=\ | 1052 ol (722 | Fq052
R\ 2 ] 0-47 Sy 10.47
-0.5¢ 1 1042 0.5} 1 4 0.42
il \ | 4037 L \ | o037
' , b 0.32 ) . e 0.32
-1.5¢ insulator readout strip . 0.27 -1.5F insulator readout strip - 0.27
ot | 0.22 ol | 0.22
0.17 0.17
2.5} : 0.12 2.5¢ . 0.12
L | 0.07 2l 1 0.07
31 , . , , 0.02 3 , , , , 0.02
4 2 0 2 mm -4 2 0 2 mm
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component:

Static weighting potential of a readout strip

Micromegas toy-model example

The time-dependent weighting potential y,(x,t) is comprised of a static prompt and a dynamic

3.5F ) 1
3t l,bi(X, t) - lﬁf(X) ]
2.5 7
2 gas gap cathode §

1.5F insulator readout strip _
o )8 §
2.5F i
-3+ J
-4 -2 0 i mm
UNIVERSITEIT
sl A BRUSSEL EP

0.97
0.92
0.87
0.82
0.77
0.72

4 0.67
r10.62
4 0.57
4 0.52
r 0.47
1 0.42

1 0.37

0.32
0.27
0.22
0.17
0.12
0.07
0.02

Time=0 ns

Wi(xa t) = l//lp(x) +

mim
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gas gap

cathode

l

insulator

Djunes Janssens

Dynamic weighting potential of a readout strip with resistive layer

V

0.97
0.92
0.87
0.82
0.77
0.72

10.67
10.62
10.57
10.52
10.47
10.42
1 0.37

0.32
0.27
0.22
0.17
0.12
0.07
0.02
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Resistive strip bulk Micromegas

Calculated dynamic weighting potential

t=0ns t=0ns

While the previous slide the embedded readout electrodes were

beneath a thin resistive layer, the ATLAS-type MM, used in the E . E :- '
NSW upgrade, instead features perpendicular resistive strips over ===
a dielectric foil. N IR

-06 -0.4 -0.2 0.0 0.2 0.4 0.6
x-Coordinate [mm)] y-Coordinate [mm]

t=6.39 ns

t=6.39ns

Here we use a 2D strip readout to capture the delayed
component coming from the resistive strips.

€ o
)

z-Coordinate [mm]
o o
=

z-Coordinate [mm]

1
o
S

cathode

resistive strips

-0.2 0.0 0.2
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resistive StT'lpS " t=1095.6 ns t=1095.6 ns 10
y _. 02 = 02 I '
x-strip = 01 S 01 g
insulating layer g B oy
g ‘ay . 3 00 £ 00 Y- g
y-strips g @ 8 S 048
« > « > -086 -0.4 -0.2 0.0 0.2 0.4 0.6 -01 0 01 0
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i Djunes Janssens
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Resistive strip bulk Micromegas

After having calculated the signals induced on the strip
electrodes, the electronics with which the detector is read

out needs to be taken into account.

Electrode 5
0.05&- ‘ ‘ ‘

0.00
w -0.05
£
2 _010
c
©
£ -0.15¢
o
g -020
3
£ -0.25F — prompt |
030" — delayed |
— total
-0.35 ‘ : : : .
0 50 100 150 200 250 300
Time [ns]
UNIVERSITEIT
sl A BRUSSEL EP

0.02

Electrode 6

0.00
@
£
e
= -0.02+
c
2
g
© -004-
[&]
=)
2 |
£ — prompt -
-0.06 - s
— delayed -
— total |
-0.08 | | | I I
0 50 100 150 200 250 300
Time [ns]

o REEIEE

A 4

Amplitude [a.u.]
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— Electrode 5

4r —— Electrode 6
—— Electrode 7

3+ — Electrode 8 -
—— Electrode 9

0 100 200 300 400 500 600

Time [ns]

Djunes Janssens
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Resistive strip bulk Micromegas

10/14/24

¢ For the comparison we look at the average induced current response of neighboring strips. This averaging is performed
over muon events positioned between the leading and the next-to-leading strip.

Amplitude [ADC]

1500

1000+

500

0

H . ey
region of incident muons mesh
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insulating layer
X-Strips
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............................ 50— 1500 ‘ . . 1500 : - - 1500 e :
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6-gap MRPC

The dynamic weighting potential was calculated using COMSOL and then imported into Garfield++ for the induced
signal calculations. Given a graphite layers with O(100 kQ/o), the signal induced by electrons remains unaffected.

, ; =
. graphite layer (0.3 MQ/o) i
058
06
0.4
readout strip « graphite layer (0.3 MQ/o) B K&
: . . 0
3 10 kQ/o = ¥ \ 10 kQ/o
e i g 4
-40 || - -1
§ —60l! | — Total signal , 2 23 — Total signal
[ . o - 1
§ -80 |/ - Prompt component - § | / — Prompt component
£ '123 v | — Delayed component - 2 _3? / — Delayed component
0 10 20 30 40 50 0 N A1.0d 20 a 30 a 40 N -50
Time [ns] Time [ns]

_ — AL Djunes Janssens
ool B o 22 Consistent with G. Battistoni et al., NIM in Physics Research 202 (1982) 459. 29
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6-gap MRPC

The dynamic weighting potential was calculated using COMSOL and then imported into Garfield++ for
the induced signal calculations. Given a graphite layers with O(100 kQ/o), the signal induced by electrons

remains unaffecte(i.
T

Time=0 ns

Y graphite layer (0.3 MQ/o)

— 20 : = 10 kQ/a]

=) 10 kQ/o = \ 10 kQ/o

@, N ] o O

= -20 =

@© ©

c c _1 L _

o -40 i

2 e — Total signal ] 2 , — Total signal ]

© ] o] — = 5

g -80 Prompt component - & Prompt component |

2 —128 | Delayed component 2 -3 Delayed component_;
7 10 20 30 40 50 0 10 20 30 40 50

Time [ns] Time [ns]

ELTVLY Djunes Janssens
;% Consistent with G. Battistoni et al., NIM in Physics Research 202 (1982) 459.
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Signal formation in a MicroCAT detector

The MicroCAT’s two-dimensional interpolating readout structure allows for a reduced number of electronic
readout channels without loss of spatial resolution.

This resistive readout concept has recently enjoyed renewed interest with the development of a DC-Coupled
LGAD device: arXiv:2204.07226 [physics.ins-det].

Position in the y—-direction [mm]

Weighting potential map for one Comparison of the distortion on the boarder
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Signal formation in a MicroCAT detector

The MicroCAT’s two-dimensional interpolating readout structure allows for a reduced number of
electronic readout channels without loss of spatial resolution.

This resistive readout concept has recently enjoyed renewed interest with the development of a DC-
Coupled LGAD device: arXiv:2204.07226 [physics.ins-det].

Weighting potential map for one Comparison of the distortion on the boarder
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MicroCAT resistive position interpolation readout
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During production, the resistivity can fluctuate on the surface of the resistive layer. This could make the timing
response or reconstruction capability of your detector non-uniform over the active area.

High-Precision 4D Tracking with Large Pixels using Thin
Resistive Silicon Detectors

R. Arcidiacono®?*, G. Borghi4, M. Boscardin®, N.Cartiglia®, M. Centis
Vignali®, M. Costa®, G-F. Dalla Bettaf, M. Ferrero®, F. Ficorella®,
G. Gioachin®, L. Lanteri®, M. Mandurrino®, L. Menzio*, R. Mulargia®®, L.
Pancherif, G. Paternoster®, A. Rojas®, H-F W. Sadrozinskig, A. Secidens,
F. Siviero®, V. Sola®¢, M. Tornago™®

*INFN, Sezione di Torino, Italy
b Universita del Piemonte Orientale, Italy
¢ Universita di Torino, Torino, Italy
4 Politecnico di Milano, Milano, Italy
“Fondazione Bruno Kessler, Trento, Italy
! Universita degli Studi di Trento, Trento, Italy
9 University of California at Santa Cruz, CA, US

® U.ensor this term groups all sensor imperfections contributing to an
uneven signal sharing among pads. The most obvious one is a varying
n't resistivity: a 2% difference in nT resistivity turns an equal signal
mV - 50.5 mV split, yielding a shift of the position assignment of ~ 7
pm for the 450 pm geometry and 20 pm for the 1300 pm design. The
uniformity of the n' resistive layer (and that of the gain implant) is a
crucial parameter in RSD optimized for micron-level position resolu-
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Map of non-uniform resistivity in one readout cell

tion.

R. Arcidiacono et al., arXiv:2211.13809v1 [physics.ins-det]
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Summary

The movement of charges induces signals on metal electrodes.

The signal shapes are therefore determined by the dynamics of the charges inside the detector i.e. by the
movement of electrons and lons in gaseous detectors.

These signals can be calculated by means of weighting potentials and weighting fields that are solutions of
the Laplace equation.

The formalism can be extended to detectors containing resistive elements by use of time dependent
weighting fields.

Signals in GEM detectors are mainly due to the movement of the electrons in the induction gap.
Signals in Micromegas detectors are characterized by a short electron ‘spike’ and a longer ‘flat’ ion tail.

Signals in wire chambers are mainly due to the movement of ions and are characterize by a long
hyperbolic 1/(t+t,) tail.
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