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Lecture Menu

• Event Reconstruction:

 Trigger & Data Acquisition; Track Reconstruction; Vertex Reconstruction.

• Statistics & Numerical Methods: Function Minimization; Statistical Models and Estimation.

• Track Reconstruction:

Track Models: Equations of Motion; Track parametrization; Track propagation.

Track Finding Techniques: Basic-techniques, Conformal mapping transformation, Artificial Retina, 

Hough/Radon transform, Legendre transform, Neural  Networks, Kalman Filter.

Track Fitting: Least-Square Fitting, Adaptive Fitting, Circle & Helix Fitting.

• Vertex Reconstruction:

Vertex Finding: Primary Vertex Finding in 1D.
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Event Reconstruction

29/11/24

The event reconstruction chain of a typical experiment spans from the trigger to the physics objects 

reconstruction. The main components of the event reconstruction cover the following:

1. Trigger and Data Acquition

2. Track Reconstruction

3. Vertex Reconstruction

4. Physics Objects Reconstruction
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1. Trigger and Data Acquisition

29/11/24

• Trigger and Data Acquisition: A selection mechanism is required that tags the physically interesting 

events and activates the next steps of the data recording (data acquisition - DAQ). Trigger systems of 

the experiments have been deployed for many decades, from bubble chambers to electronic tracking 

detectors and calorimeters. 

• Trigger systems are vital for fixed target as well as for colliding beam experiments due to limitations in 

data rates, storage capacity and computing resources. 

• Trigger systems are implemented in several levels/stages with increasing computational complexity 

and decision latency to minimize the dead time of the trigger. 

• A typical example of  a Trigger & DAQ (TDAQ) system based on the ATLAS experiment follows.

Continue...
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Example of a Typical TDAQ system (ATLAS Experiment)

ATLAS trigger and DAQ scheme:

• Level-1 trigger makes an initial 

selection based on the huge number 

of electronics modules. There are two 

main L1 trigger systems: L1 

calorimeter trigger (Level1-Calo) and 

the L1 muon trigger (Level-1 Muon)

• Selected objects are sent to  L1 

central trigger processor (Central 

Trigger)

• The L1 trigger provides “region-of- 

interest (RoI)” information including 

position (η and φ) and pT range of 

candidate objects for the input of HLT.

• The L1 trigger makes a trigger 

decision within about 2.5 μs and 

reduces the event rate from 40 MHz to 

100 kHz.

• Only events selected by the L1 trigger are read out from the front-

end electronics systems to the readout systems (ROS). Further 

trigger selections are done by the HLT.

• Only events accepted by the HLT are recorded in the data storage. 

The HLT reduces the event rate from 100 kHz to a few kHz.

from previous page…
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2. Track Reconstruction

• Track reconstruction is a main task in the analysis of the event data.

• It provides estimates of the track parameters, including the position, the direction, and the 

momentum of charged particles at one or several specific points or surfaces.

• The tracks of stable or sufficiently long-lived charged particles are visible in the tracking detectors. 

The short-lived particles (i.e. B hadrons or J/ψ mesons) are reconstructed from their decay 

products. 

The reconstruction of charged particles can be divided into four steps (1. Hit generation, 2. Local track 

reconstruction, 3. Global track reconstruction, 4. Assesment of track quality):

1. Hit generation – the electronic signals from the various tracking system detectors are converted to spatial 

coordinates either 2D or 3D, using the detector-specific calibration constants. The coordinates are called 
measurements or observations or hits.  

2. Local track reconstruction – tracks are reconstructed in each tracking system. This process can be analysed 

into three steps: a) Track segment reconstruction, b) Track finding, and c) track fitting.

Continue...
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a) Track segment reconstruction: this step is relevant only for tracking systems that are composed of several 

independent devices capable of giving at least the position and the direction of the particle and possibly the 

momentum. An example is the muon MDT/ATLAS chambers or the micromegas modules of the ATLAS News 

Small Wheel detector system which consist of eight layers where each layer can provide enough hits to 
estimate the parameters of a straight line track segment (tracklet).

b) Track finding: in this step, hits or track segments are clustered to track candidates. Track finding can be done 

iteratively, i.e., in the very-high multiplicity events recorded by the LHC experiments. In this case, 

“easy/obvious” tracks with high momentum and small material effects are found first, while more “difficult” 

tracks are extracted in the subsquent passes. 
c) Track fitting: for each track candidate, a track model is fitted to the hits in order to get the best estimtes of the 

track parameters. The fit gives an indication of the quality of the fit, by examing the chi-square χ2 parameter. 

An abnormal large value of the chi-square indicates either a random combination of hits or the presence of 

outliers in the track candidate. Outliers can either be remove from the track or down-weighted.

Track Reconstruction

3.  Global track reconstruction – after the local track reconstruction, the tracks found in the individual tracking 

systems must be combined to global track candidates. The track candidates accepted by the track fit in the main 

tracking system are extrapolated to the other tracking systems and checked for compatibility with the tracks 

reconstructed there. The successful combination of local tracks to a global candidate is followed by a track fit of the 

global candidate.

4.  Assessment of track quality – Not every track candidate generated by the track finding is a valid track. Testing 

the track hypothesis and assessing the track quality after the track fit is therefore mandatory.

from previous page…
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3. Vertex Reconstruction

• A point where particles are produced in a collision, or a decay is called a vertex.

• Primary vertex: The point of collision of two beam particles in a collider or of a beam particle with a target particle in 

a fixed-target experiment. 

• In high-luminosity colliders, such as the LHC, many collisions occur in a single bunch crossing; consequently, there 

are many primary vertices. It is, however, statistically almost certain that at most one of the collisions generates a 

pattern recognized by the trigger as being of potential physical interest. The vertex of this collision is called the 

signal vertex.

• Secondary vertex: many of the particles produced at a primary vertex, including the signal vertex, are unstable and 

decay at a secondary vertex. 

• The aim of of vertex reconstruction is to find sets of particles that have been produced at the same vertex, to 

estimate the vertex position, test whether the assignment of the particles to the vertex is correct and improve the 
estimates of the track parameters by imposing the vertex constraint. Alternatively, the vertex can be estimated from 

the hits in a global method without benefit of tracking.
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4. Physics Objects Reconstruction

• Both the trigger and the physics analysis require not just tracks, but objects that represent physical entities, i.e. 

electrons, photons, muons, τ leptons, jets, missing energy, etc. 

• Object identification can be obtained by two complementary approaches: 1. dedicated detectors for particle 

identification (PID), and 2. combining information from different sub-detectors.

1.  Dedicated detectors for particle identification (PID) – Charged particles can be identified by dedicated detectors in 

various ways, like: 

o Measurement of the velocity: Given the momentum as determined by the tracking system, the mass can be 

estimated. Velocity can be measured directly by time-of-flight detectors, or indirectly by measuring the emission 

angle of Cherenkov radiation in Cherenkov detectors.
o Energy loss by ionization: In a large range of velocity, the expected energy loss by ionization is proportional to 

(m/p)2, where m is the unknown mass and p is the momentum of the particle. In practice, the most probable energy 

loss is estimated from several measurements. In a silicon tracker, energy loss is measured in each sensor; in a drift 

or time projection chamber (TPC), the energy loss is measured for each wire hit or for each cluster in the endplates, 

respectively.
o Transition radiation: Transition radiation (TR) is electromagnetic radiation in the X-ray band. It is emitted when an 

ultra relativistic particle crosses the boundary between two media with different dielectric constants. The radiator is 

combined with a gaseous detectors that measures the TR signal and the position of the particle.

Continue...
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2.  Particle and Object ID by tracking and Calorimetry – PID in dedicated detectors is complemented by combining 

information from the tracking systems and the calorimeters.

 

o Electrons: Electrons and positrons are identified as such by the fact that they have a reconstructed track and a 

cluster in the electromagnetic calorimeter that matches the track in energy and position.
o Photons: Clusters in the electromagnetic calorimeter that are not matched to a track or a cluster in the hadronic 

calorimeters are candidates for photons.

o Muons: Global tracks with hits in both the central tracking system and the muon tracking system.

o Jets: Jets are narrow bundles of charged and neutral particles produced by the hadronization of a quark or a gluon. 

Jet reconstruction algorithms are based on clustering the charged tracks but should also provide a good 
correspondence between the energy deposits in the calorimeters and the reconstructed tracks. This is the aim of 

the particle flow method, which originated in the ALEPH experiment at the LEP collider and is now employed by 

LHC experiments as well.

o Tau leptons: Tau leptons must be reconstructed from their decay products. In 2/3 of the cases, τ leptons decay into 

hadrons, typically into one or three charged mesons (mainly π), often accompanied by neutral π’s decaying into 
photons and an invisible neutrino.

o Missing energy: Missing transverse energy is a signature for invisible particles such as neutrinos, dark matter, etc.

from previous page…
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Track Reconstruction
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1. Track Models

2. Track Parametrization

3. Track Finding Techniques

The track reconstruction includes three main items:  
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1. Track Models
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• Let’s examine how the equations of motion for charged particles in a homogeneous or inhomogeneous magnetic 

field are solved. Various types of parametrizations are presented, and formulas for track propagation are given.

Consider a charged particle with mass m and charge Q = qe, where e is the elementary charge and q is an integer, 

usually q = ±1. Its trajectory or position r(t)= (x(t), y(t), z(t))T in a magnetic field B(r), as a function of time, is determined 

by the equations of motion given by the Lorentz force F ∝ qυ × B, where υ = dr/dt is the velocity of the particle. In 

vacuum, Newton’s second law gives:

where the parameter k = 0.3 (GeV/c) T-1 m-1

The trajectory is uniquely defined by the initial conditions, i.e., the six degrees of freedom specified for instance by the 

initial position and the initial momentum. If these are tied to a reference surface, five degrees of freedom are 

necessary and sufficient. Geometrical quantities other than position and velocity can also be used to specify the initial 

conditions. The collection q = (q1,. . . ., qm) of these quantities is called the initial track parameter vector or the initial 

state vector.

continue...



29/11/24 13Data Analysis and Reconstruction Techniques, Theo Alexopoulos

Track Models
from previous page…

Equation of motion can be written in terms of the path length s(t) along the trajectory instead of t:

In a homogeneous magnetic field, the solution is a helix; it reduces to a straight line in the limit of B = 0. In the general 

case of an inhomogeneous magnetic field, one must resort to numerical methods such as Runge–Kutta integration of 

the equations of motion.

The above Equation of motion can be expressed in terms of other independent variables. For example, if the 

equations of motion are integrated in a cylindrical detector geometry, the radius R is a natural integration variable. In a 

planar detector geometry, the position coordinate z could be the variable of choice.

continue...
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2. Track Parametrization
• Different detector geometries often lead to different choices of the track parameters. In a 

barrel-type detector system typical for the central part of collider experiments, a natural 

reference surface of the track parameters is a cylinder with radius R, centred around the 

global z-axis, which usually coincides with the beam line. The track parameters are, in this 

case, defined at the point of intersection P between the track and the reference cylinder. In 

such a system, one possible choice of track parametrization is the following:

where pT  = p cos λ is the transverse momentum, φ is the azimuth angle of the tangent of the track 

at P, λ is the dip angle (complement of the polar angle) of the tangent at P, and RΦ and z are the 

cylindrical coordinates of P in the global coordinate system.

• In a detector system based on planar detector elements, the natural reference surface is a plane. 

Such a surface is uniquely determined by a normal vector of the plane and the position of a 

reference point inside the plane. A local coordinate system is defined such that the u-axis is parallel 

to the normal vector and the υ- and w-axes are inside the plane. A natural choice of track 

parameters is:

where ψ = q/p, dυ/du is the tangent of the angle between the projection of the track tangent into the 

(u,υ)-plane and the u-axis, dw/du is the tangent of the angle between the projection of the track 

tangent into the (u,w)-plane and the u-axis, and υ and w are the local coordinates of the intersection 

point of the track with the plane.

λ
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Track Propagation

• The track model, given by the solution of the equations of motion, describes the functional dependence of the state 

vector qj at a surface j on the state vector qi at a different surface i:

The function fj|i is called the track propagator from surface i to surface j. When 

closed-form solutions of the equations of motion exist, e.g., in the two situations of 

Β = 0 and homogeneous magnetic field, the track propagator can be written as an 

explicit function of the path length. For the helical solution in a homogeneous 

magnetic field, however, such an analytical formula exists only for propagation to 
cylinders with symmetry axis parallel to the field direction or to planes orthogonal 

to the field direction. 

continue...
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from previous page…

Track Propagation - Homogeneous Magnetic Fields  

The helical track propagator takes the solution of the Equation of motion as a starting point. The solution can be written 

in the form:

Any point along the trajectory can be specified by a corresponding value of s. The equation of the unit tangent vector t 

is found by differentiating the above Equation with respect to s:

For a given value of s, any desired set of track parameters can be calculated from above Equations for the positions 

and for the directions. In the helical track model, the momentum p is constant.
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from previous page…

Track Propagation - Inhomogeneous Magnetic Fields  

In an inhomogeneous magnetic field, the equations of motion have no exact closed-form solutions, and one must 

resort to either a) approximate solutions  or b) numerical Runge–Kutta Method.

a) Approximate Analytical Formula:

The magnetic field B(z) = (Bx, By, Bz) is assumed to depend only on the z-coordinate. The particle is assumed to move 

along the z-axis, and the track parameters are x, y, tx, ty, ψ, where tx, ty  are the direction tangents. In this 

parametrization, the equations of motion are:
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from previous page… Approximate Analytical Formula:

The aim is to find formulas for the extrapolation of (tx, ty) from z0 to zf ; the extrapolation of x and y can then be performed by 

integration of the track directions. It will be convenient to obtain first a general formula for extrapolation of any function T(tx(z), ty(z)) 

from z0 to zf and only then to substitute T = tx and T = ty into the final formula.

Let a function T is given by T(z) = T(tx(z), ty (z)), then:

The derivatives of the new functions Ti1(z) can also be expanded in the same way as the T(z) derivative by introducing new functions 

Ti1i2 (z):

Using Equation the 

function T(zf) can be 

written as:

Substituting T=tx and ty into the formula one can obtain 

the extrapolated track parameters. Coefficients txi1..ik, 
tyi1..ik are calculated using the recursive formula.
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b) numerical methods (Runge–Kutta), 

• Runge–Kutta methods are iterative algorithms for the approximate numerical solutions of ordinary differential 

equations, given initial values.  

• Runge–Kutta–Nyström methods are specialized Runge–Kutta methods that are optimized for second-order 

differential equations such as the one:

• In the fourth-order version a step of length h, starting at s = sn, is computed by:

where rn is the position of the particle at s = sn, r*n is the unit tangent vector. The magnetic field needs to be looked up three times 

per step, at the positions rn, rn + h r*n/2 + h2k1 /8, and rn + rn + h r*n + h2k3 /2. 

from previous page…
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3. Track Finding Techniques
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There is no systematic theory of track finding yet. We will present some of an extensive list of basic techniques which 

have been successfully used, stand-alone or in combination, in past and present experiments. Among them are the

• Conformal  Mapping Transformation

• Artificial Retina

• Hough Transform

• Legendre Transform 

• Neural Networks

• Kalman Filter

As track finding in most cases delivers some candidates that do not correspond to actual particle tracks, we will 

discuss some methods for an efficient selection of valid track candidates.
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Conformal Transformation

Ιn the conformal algorithm, point coordinates in global Euclidean space (x, y) are translated into the conformal space 

(u, υ). The idea behind this coordinate transformation is that circles passing through the origin of a coordinate system 

(x, y) can be transformed into straight lines in a new coordinate system (u, υ). The circle equation in global coordinates 

(x, y):

is equivalent to a straight line in the (u, υ) plane:

if the circle is passing through the origin such that R is fixed to R2  = a2 + b2 and if the following transformations are 

applied:

Through the application of the conformal mapping, finding tracks of charged particles bent by a homogeneous magnetic field can be 

reduced to a search for straight lines. The radial order of the hit positions is inverted in the conformal space with respect to the global 

space: hits on the innermost part of the detector are mapped to outer regions in the (u, υ) plane and vice versa.

Continue...
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Conformal Transformation
from previous page…

This is the equation of a straight line in the (u,υ) plane with distance 

d=1/(2R) from the origin. A circle with a large radius R or small 

curvature is therefore transformed into a line that passes very close 

to the origin. In the limit of zero curvature, the circle becomes a line 

transformed into itself by the conformal mapping. Both circle finding 
and circle fitting can be simplified by this transformation from circles 

to straight lines.

The simple pattern recognition technique suggested in original 

applications of conformal mapping consists of grouping hits aligned 

in the same direction in the (u, υ) plane, by searching for peaks in 

the angular hit distribution in conformal space. However, this method 

does not consider deviations from the straight-line path, which can 
arise in real measurements. These deviations come either from 

multiple scattering or from the mathematical approximations 

introduced in the conformal mapping formulas, as is the case of 

particles not produced at the origin of the (x, y) plane, also known as 

displaced or non-prompt particles.
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Hough Transform
The Hough transform is used to detect straight lines can be detected. In general, the straight-line 

y = ax + b can be represented as a point (b, a) in the parameter space. However, vertical lines 

pose a problem. They would give rise to unbounded values of the slope parameter a. Thus, for 

computational reasons, Duda and Hart proposed the use of the Hesse normal form of a line

x

y

O

r

r̂

P(x,y)
ρ

θ
where r is the distance from the origin to the closest point on the straight line, and θ is the 

angle between the axis and the line connecting the origin with that closest point. It is therefore

possible to associate with each line of the image a pair (r,θ). The (r,θ) plane is sometimes referred to as Hough space for the set of 

straight lines in two dimensions. The Hough transform is a case of the general Radon transform. 

Given a single point in the plane, the set of all straight lines going through that point corresponds to a sinusoidal curve in the (r, θ)

plane, which is unique to that point. A set of two or more points that form a straight line will produce sinusoids crossing at the (r, θ)

for that line. Thus, the problem of detecting collinear points can be converted to the problem of finding concurrent curves, i.e. 

intersection points in the Hough space. 

θ

r

Hough transform

In practice, the measured points do not lie exactly on a straight 

line, and the lines in the Hough space do not intersect exactly in 

a single point. The usual approach is to define a binning in the 

Hough space and count the number of lines crossing each bin. 

Peaks in the 2D histogram correspond to lines that are close to 

many points in the image space. The size of the bins depends on 

the distribution of the measurement errors and can be tuned on 

simulated tracks.

Continue...
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Hough Transformfrom previous page…

If the curve to be found in the image space is a circle (as in the case of detecting Cerenkov rings) in general position 

with the equation:

the constraint that the circle passes through the point (xi ,yi) defines a second order surface in the 3D Hough space of 

(x0, y0, z):

It follows that finding circles requires finding intersection points of surfaces in a 3D histogram, which is computationally much 

more expensive than the same problem in 2D. 

An alternative is the randomized Hough transform, that randomly selects triplets of points. The centre of the circle passing 

through the triplet (that defines a triangle), and its radius are stored in a 1D histogram. Peak finding can be done in 3D or in the 

2D histogram of the circle centres.

Continue...
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Application of Hough Transformfrom previous page…

Application of Hough transform in micromegas detector 

(example of a MPGD-Micro Pattern Gaseous Detectors).

• To exploit the timing information per strip the µTPC 

reconstruction method has been developed based on 

Hough transform that can provide a very precise track 
segment in a single detector gap.

• The clustering algorithm distinguishes multiple tracks 

and/or hits due to noise or delta rays.

• For normal tracks, a cluster building algorithm can be 
used allowing for a single missing strip between two 

strips per cluster. Cluster building is performed in 

ascending strip numbers. The charge weighted track 

position is 

garfield simulation
real event
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Artificial Retina
The concept of the “Artificial Retina” was introduced like the Hough transform, it relies on a partition of the track parameter space 

into cells. 
Consider an events with two tracks passing through several parallel detector layers. Given the coordinates of the hits, we want to 

estimate the parameters of all the tracks that generated them. Each track is identified by two parameters (a,b) and the coordinates of 

the intersections of the track with the detector layers are yi(a,b) = axi +b where i is the layer number. We build a bidimensional grid in 

parameter space where each grid element is identified by a pair of values (a,b). For each event we then compute the response 

function, Gaussian type like:

a

x

y

b

a

where sij = yij − (axi + b) is the distance of hit j in layer i from the 

ideal track position in layer i, and σi is a scale parameter that 

regulates the width of the receptive field in layer i. The sum is 

extended to all hits present in all the layers and computed for all 

elements in the grid. 

Other response functions are of course possible (like a Lorentzian), 

and their shape and width can be adjusted for optimal performance. 

As with the Hough transform, track candidates correspond to the local 

maxima of intensity in parameter space.

• The artificial retina is eminently suitable for high-speed track finding, as it can be highly parallelized and implemented on 

commercial FPGAs.
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Geometrical Legendre Transform

• The Legendre transform is an extension of the Hough transform, used to find common tangent lines to a set of circles. 

• The Legendre transform is a well-known mathematical tool in Thermodynamics and Analytical Mechanics. Consider a convex 

function and a straight line of the form y = px + a, where p and a are the slope and intercept, respectively. For a value p of the 

slope the Legendre transform of the function f(x) is defined as follows:

The notation sup_x indicates the maximization of the function px – f(x) with respect to x for constant p, while inf_x indicates the 

minimization of f(x) - px with respect to x for constant p.

As it is demonstrated, for a given value p of the slope, this transform finds 

the point of f(x), where the tangent line has a slope p. The intersection of 

the straight line with the y-axis is given by –F(p) (in convex functions). 

Thus, each point (p,F(p)) in Legendre space represents a line, tangent to 

the curve f(x). The Legendre transform can also be applied to a concave 

function.
convex function

concave function

Legendre transform of a circle:

Representation of the circle in Legendre transformation space. The circle corresponds to 

two sinograms in the Legendre transformation space.

Continue...
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Legendre Transformfrom previous page…

Drift chamber with two multi-track events with noise level of 100% and 200%, for Events 1 and 2, respectively. Each one of the 

events were reconstructed using the Legendre transform method with their corresponding Legendre transforms. The circles in 

Legendre space graphs denote the points with the highest height, corresponding to the three tracks.

Study the Legendre transform method using a Monte Carlo algorithm to produce 

random lines and create the hits for each tube. As an example, the algorithm is 
tested in the Monitored Drift Tube detector of the ATLAS experiment, a straw type 
chamber. In this study, a Drift Chamber of eight tube layers including 36 tubes in 

each layer, is used. The diameter of each tube is 30 mm. After calculating the hits, 
a Gaussian measurement error is applied to each hit. Moreover, random hits are 

generated to simulate random noise hits in the detector. The study is performed 
for single and multi-track events. In each case, the reconstructed line parameters 
are calculated.

resolution versus noise using hits with a 

standard deviation of 100 μm. The data are 
simulated with noise up to 600%.

Continue...
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Legendre Transformfrom previous page…

• Application of Legendre transform in pattern recognition method that identifies the common tangent lines of a set 

of ellipses:

Elipse:

Legendre Trasform:

Implementation of a Monte Carlo 

algorithm that produces random two 

track events and assigning noise hits. 

These tracks pass through the cell of 

the different layers of the detector, 

assigning ellipses that are co-eccentric 

within the different cells of the chamber.

Continue...
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Legendre Transformfrom previous page…

• A method of reconstructing the circle parameters from a set of datapoints on a plane based on the geometrical Legendre transform. 

This method can be used to identify Cerenkov rings.

• The Legendre Transform eminently suitable for high-speed track 

finding, as it can be highly parallelized and implemented on FPGAs

• For three datapoints on a plane a circle is constructed, and then its Legendre transform:

= x0

= y0

circle: concave part

convex part

Legendre Transform of the circle: 

• Considering n given datapoints, all the possible circles for each triplet of datapoints are constructed. The Legendre transform, of all 

reconstructed circles, will be given by the sinograms:

• Also consider the difference and sum of r1 and r2:

(a) The red and blue datapoints originate from the two 

circles (red and blue lines) having received a smearing 
of 10%. The outliers/noise hits (black datapoints) are on 
a 50% percentage of the circle's datapoints. (b) The 

Legendre space of r1-r2 from the datapoints of (a). (c) 
Concave and convex representations of the circle's 

datapoints. (d) The Legendre space of r1+r2 from the 
datapoints of (a). 
Estimation of the radius of the circles by searching for 

maxima in r1-r2 while the centre of circles by searching in 
r1+r2 distributions.
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Neural Networks

• The application of neural networks to tracking is of the Hopfield type, the neurons being track segments that 

connect observations in adjacent or nearby layers of the detector.

sj

sj wij

• A Hopfield network is a fully connected network with a single layer of neurons. In the 

simplest case, the neurons are binary with two states: si = ±1, i = 1, . . . , n. Each pair (i,j) 

of neurons has a fixed connection weight/synapses wij with wij = wji and wii = 0. The states 

of the neurons evolve in discrete time steps according to the rule:

The network has an associated “Energy” function:

• The aim is to find the global minimum. To this end, thermal noise is introduced in the network. At temperature T, the 

state s is Boltzmann distributed with the probability function and partition function Z:

Continue...
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Neural Networksfrom previous page…

• As the number of possible states rises exponentially with the number of neurons, the partition function Z is computed in the mean-

field approximation, and the thermal average υi of si is given by:

where the states υ = (υ1 ,.., υn) are now continuous in the interval (−1,1). The definition of the new energy function E(υ) is 

analogous to E(s):

and the update is modified accordingly:

• Finding the global minimum of the energy function is facilitated by deterministic simulating annealing algorithm. First, the energy 

function is minimized at high temperature; the temperature is then lowered according to a predefined cooling or annealing 

schedule. At low temperature, the states of the network are close to either +1(active) or −1(inactive).

• To keep the number of neurons manageable, geometric cuts ensure that only segments that can be part of an actual track in the 

momentum range of interest are used as neurons.
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Track Candidate Selection

• After track finding, track candidates may share hits. 

• If two candidates share more hits than is deemed acceptable, for instance more than one, the track candidates are 

called incompatible. 

• The incompatibility relation can be represented by a graph (V,E), where the n vertices υi ∈ V, i = 1, . . . , n are the 

track candidates. 

• Two incompatible track candidates υi, and υj are connected by the edge eij = eji, which is defined as the unordered 

pair (υi, υj ).

• The number of compatible track candidates can be maximized by finding an independent set of vertices of maximal 

size, i.e., a subset V1 ⊆ V of vertices, no two of which are connected by an edge.

 

• Finding the largest independent set is not necessarily the best approach for finding an “optimal” set of track 
candidates, as the quality of the track candidates should be considered, too. If the quality of the candidate υi is 

quantified by a positive weight wi, the problem is to find an independent set that maximizes the Σιwi .



34Data Analysis and Reconstruction Techniques, Theo Alexopoulos29/11/24

Linear Approaches to Circle and Helix Fitting
• Will present a couple of linearized fits of space points to circles and helices.

1. Conformal Mapping Method:

• The conformal transformation described in track finding analysis can be generalized to deal with circles passing 

close the origin. The values obtained however, are only approximate, since equation R2 = a2+b2 forces the circle to 

pass through the origin and the important third parameter determining a track, the impact parameter ε, is lost.

• Τhe situation can be resolved by allowing for a small difference between R2 and a2+b2 , which we call it δ: 

     δ = R2 – (a2 + b2)  
• For δ << R2 we then have, instead of a straight line, a parabola with a very small curvature:

here terms of the order of δ 2 and higher have been neglected. Using the approximations:

the equation for the parabola then becomes:

this equation is identical to a linear equation except for the term representing the curvature, which is proportional to the impact 

parameter. An ordinary parabola fit in (u, v) space will therefore yield the three circle parameters a, b, ε in (x, y) space.

Continue...
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2. Chernov and Ososkov’s Method:

from previous page…

• The task of fitting a circular track to a set of measurements is equal to minimizing the function:

where di are measurement residuals orthogonal to the particle trajectory:

where a, b, and R are the coordinates of the circle centre and the radius. The approach of Chernov and Ososkov is to 

simplify this non-linear minimization problem by introducing an approximate expression for the residuals di:

if the residuals are small compared to the circle radius. The equations obtained by differentiating χ2 with respect to 

the circle parameters and setting these to zero are quartic (polynomial equations of 4th degree) and can be solved 

efficiently by a standard Newton iteration procedure.

Continue...
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Vertex Reconstruction

29/11/24

• Vertex finding is the search for clusters of tracks that originate at the same point in space.

• Vertex finding is the process of dividing all or a subset of the reconstructed tracks in an event into classes such that 

presumably all tracks in a class are produced at the same vertex. Vertices in an event can be classified as primary 

vertices or secondary vertices.

• In a fixed target experiment, a primary vertex is the point where a beam particle collides with a target particle; in a 

collider experiment, a primary vertex is the point where two beam particles collide.

• A secondary vertex is the point where an unstable particle decays, or where a particle interacts with the material of 
the detector. The search for secondary vertices is often based on a well-reconstructed primary vertex or vertices.

Continue...
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Vertex Reconstructionfrom previous page…

• Hits from a vertex chamber: The vertex along the beam line, zυ, is estimated from 

the hits in a global method without benefit of tracking. It maximizes the following 

summation vertex function over all hits in the vertex chamber:

The subscript m (m = 1,…,m(n)) is the number of hits in plane n (n = 1, 2, 3). The 

coordinate of plane n is xn cm from the beam line at x = 0. The index k steps through 

the hits of plane of the outer plane. 

• Hits from straw chambers: Apply the Legendre transform and clustering 

algorithms to the set of hits, in a fast and coarse way and extract the lines and 

respective associated hits per line. Then the associated hits form the vertex 

function G(z) as before. After maximizing the vertex function G(z) a vertex point is 

extracted.
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Backups
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Statistics & Numerical Methods

29/11/24

Will discuss some statistical and numerical methods in data Analysis and Reconstruction techniques. 

1. Analysis of Functions Minimization: Gradient-based methods and a popular non-gradient method will be  

presented.

2. Discussion of Statistical Models and the Estimation of Model Parameters. The basics of linear and nonlinear 

regression models and state space models are presented, including least-squares estimation and the (extended) 

Kalman filter. (in Backups)
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1. Function Minimization

• The minimization (or maximization) of a multivariate function f(x) is a task in solving non-linear systems of 

equations, clustering, maximum-likelihood estimation, function and model fitting, supervised learning, etc.

• A basic classification of minimization methods distinguishes between methods that require the computation of the 

gradient or even the Hessian matrix of the function and gradient-free methods. ”Hessian matrix describes the local 
curvature of a function of many variables. It is a square matrix of second-order partial derivates of a scalar-valued 

function, or scalar field” 

1. Methods require gradient and/or Hessian martrix

2. Gradient-free methods (in Backups).

Continue...
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1. Methods require gradient and/or Hessian martrix

Function Minimizationfrom previous page…

Newton-Raphson Method: If f(x) is at least twice continuously differentiable in its domain, it can be approximated by 

its second order Taylor expansion f (x) at the starting point x0 :
^

The step h is determined such that f(x) has a stationary point at x1 = x0 + h :
^

To ensure that the Wolfe conditions are satisfied, above relation is often relaxed to:

Inverting the Hessian matrix can be computationally expensive; in this case, h can be computed by finding an 

approximate solution to the linear system:

This procedure is iterated to produce 

a sequence of values according to:
In practice, the iteration is stopped as soon as the norm of the gradient of f(x) of 
falls below some predefined bound ε

Continue...



29/11/24 43Data Analysis and Reconstruction Techniques, Theo Alexopoulos

Function Minimizationfrom previous page…

Descent Methods: As the computation of the Hessian matrix is computationally costly, various methods that do not 

require it have been devised, for instance, descent methods. A descent method is an iterative algorithm that searches 

for an approximate minimum of f(x) by decreasing the value of f in every iteration. The iteration has the form 

As with the Newton–Raphson method, when a (local) minimum is reached, it cannot be left anymore.

Line search: a search direction d is called a descent direction at the point 

Continue...
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Track following by the Combinatorial Kalman Filter
• This method finds tracks locally or sequentially, one after the other. 

• In track following, a track candidate starts from a “seed”, i.e., a short track segment. This seed can in principle be anywhere in the 

tracking detector. Generating seeds in the outer layers of the trackers has the advantage of smaller occupancy and less 

background from low-momentum tracks; generating seeds in the inner layers, which are frequently pixel layers, has the advantage 

of using 3D hits with higher resolution both in the bending plane anhits anddinal direction. 

• The generation of seeds is often a simple combinatorial search for compatible triplets or quadruplets of hits, and includes 

information about the size and position of the beam spot.

• Once the seeds have been found, each seed is then followed through the tracker by extrapolating it toward the outside of the 

tracker or toward the production region, depending on where the seed is situated. After each extrapolation step, compatible hits 

are searched for and attached to the track candidate.

• The progressive track recognition described using the combinatorial Kalman filter (CKF). First, each seed is fitted. The parameters 

and the covariance matrix of the seed are then extrapolated to the nearest tracker layer, considering interactions with the detector 

material. The hits in the sensor in which the extrapolated trajectory intersects with the layer are tested for compatibility with the 

predicted track parameters using a chi-square statistic. 

• If n compatible hits are found, n copies of the predicted state, i.e., its track parameters 

and its covariance matrix, are generated, and each one of them is updated with one 

of the n hits according to the Kalman filter. The original state is also kept and marked 

as having a missing hit, giving a total of n + 1 track candidates. This procedure is 

iterated on each track candidate until the last layer of the tracker is reached or the 

count of missing hits in a candidate exceeds a preset threshold, typically one or two.

• In the course of the combinatorial Kalman filter, it may be necessary to limit the 

number of active candidates for reasons of memory and/or speed. In this case, the 

“worst” track candidates are discarded and not followed anymore. The quality of a

track candidate can be measured by a combination of its total number of hits, its number of missing hits, and its total chi -square χ2.
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Track Fitting

29/11/24

• Track fitting is an application of established statistical estimation procedures with well-known properties.

• Estimators based on the least-squares principle were the principal methods for track fitting. Robust and 

adaptive methods have been used.

• Will present a couple of methods:  

❑ Least-squares regression, 

❑ the extended Kalman filter
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Least-squares regression
• Assume that track finding has produced a track candidate, i.e., a collection of n measurements m1, . . . ,mn in 

different layers of the tracking detector, along with their respective covariance matrices V1, . . . ,Vn. The 

measurements may have different dimensions mi and usually have different covariance matrices. The initial 

parameters of the track to be fitted to the measurements are denoted by p. They are assumed to be tied to a 

reference surface (layer 0). The regression model has the following form:

where m = (m1, . . . ,mn)
T and f = (f1, . . . ,fn)

T . The function fk maps the initial parameters p to the measurement mk in layer k. 

It is the composition of the track propagators up to layer k and the function that maps the track state to the measurement:

• Its Jacobian Fk is given by the product of the respective Jacobians:

• The covariance matrix V is the sum of two parts, V = VM + VS. The first part is the joint covariance matrix of all measurement 

errors. These can virtually always be assumed to be uncorrelated across different layers, so that VM is block-diagonal:

Continue...
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from previous page…

• The second part VS is the joint covariance matrix of the process noise caused by material effects, mainly multiple 

Coulomb scattering. The process noise encountered during the propagation from layer k−1 to layer k is denoted 

by γk and its covariance matrix by Qk . The integrated process noise up to layer k is denoted by Γk. Linearized 

error propagation along the track gives the Linearized error propagation along the track gives the following 

expression for the covariance matrix of Γk :

with

If i < k, Γi and Γk are correlated with the following cross-covariance matrix:

 

Continue...

Least-squares regression

• Error propagation from the track states to the measurements gives the final block structure of VS :
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2.  gradient-free methods

A popular gradient-free method is the downhill-simplex or Nelder–Mead algorithm. It can be applied to functions 

whose derivatives are unknown, do not exist everywhere or are too costly or difficult to compute. In n dimensions, the 

method stores n+1 test points x1, . . . , xn+1 at every iteration, ordered by increasing function values, and the centroid 

x0 of all points but the last one. The simplex generated by the test points is then modified according to the function 

values in the test points. The allowed modifications are reflection, expansion, contraction and shrinking. The iteration 
is terminated when the function value of the best point does not change significantly anymore. The size of the initial 

simplex is important; choosing it too small can lead to a very localized search. On the other hand, it is possible to 

escape from a local minimum by restarting the search with a sufficiently large simplex.

Function Minimization
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Statistical Models and the Estimation of Model Parameters

• A statistical model is defined as a functional dependence of observed quantities (observations or 

measurements) on unknown quantities of interest (parameters or state vectors). The parameters cannot 

be observed directly, and the observations are subject to stochastic uncertainties. The aim is to estimate 

the parameters from the observations according to some criterion of optimality. There are three Models:

❑Linear Regression Model

❑Nonlinear Regression Models

❑State Space Models



29/11/24 50Data Analysis and Reconstruction Techniques, Theo Alexopoulos

Linear Regression Model

• A linear regression model has the following general form

where m is the (n × 1)-vector of observations, F is the known (n × m) model matrix with m ≤ n and assumed to be of full 

rank, p is the (m × 1) vector of model parameters, c is a known constant offset, and ε is the (n × 1) vector of observation 

errors with zero expectation and (n × n) covariance matrix V , assumed to be known. 

• Least square (LS) estimation of p requires the minimization of the following objective function:

The least-squares estimator p and its covariance matrix C are given by:

• The estimator p is unbiased and the estimator with the smallest covariance matrix among all estimators that are 

linear functions of the observations. If the distribution of ε is a multivariate normal distribution, the estimator is 

efficient, i.e., has the smallest possible covariance matrix among all unbiased estimators.

Continue...
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from previous page… Linear Regression Model
• The residuals r of the regression are defined by:

• The standardized residuals s, also called the “pulls” in high-energy physics, are given by:

• If the model is correctly specified, the pulls have mean 0 and standard deviation 1. The chi-square statistic of the 

regression is defined as:

• If the observation errors are normally distributed, χ2 is χ2-distributed with d = n−m degrees of freedom; its 

expectation is d and its variance is 2d. Its p-value p is defined by the following probability transform:

where Gk(x) is the cumulative distribution function of the χ2-distribution with k degrees of freedom and gk(x) is its probability density 

function. Large values of χ2 correspond to small p-values. If the model is correctly specified, p is uniformly distributed in the unit 

interval. A very small p-value indicates a misspecification of the model or of the covariance matrix V , or both.
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Nonlinear Regression Models

• The linear regression model can be generalized to a nonlinear model:

where f is a (n × 1)-vector of smooth functions of m variables. LS estimation of p requires the minimization of the 

following objective function:

• The function S(p) can be minimized with the Gauss-Newton method, based on the first-order Taylor expansion of f and 

resulting in the following iteration:

• At each step, the covariance matrix Ck+1 of ^pk+1 is approximately given by:

• In general, the covariance matrix of the final estimate p can be approximated by the inverse of the Hessian of S(p) at p^. The 

final chi-square statistic χ2 is given by:

• In the case of Gaussian observation errors, the chi-square statistic is approximately χ2-distributed, and its p-value is approximately 

uniformly distributed. The iterationis stopped when the chi-square statistic does not change significantly anymore.
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State Space Models

• A dynamic or state space model describes the state of an object in space or time, such as a rocket or a 

charged particle. 

• The state usually changes continuously but is assumed to be of interest only at discrete instances in 

the present context. These instances are labelled with indices from 0, the initial state, to n, the final 

state. 

• The state at instance k is specified by the state vector qk. The spatial or temporal evolution of the state 

is described by the system equation, which is 

 

in the linear state space models case & based on Kalman filter, and 

in the nonlinear state space models & based on Kalman filter case.



54Data Analysis and Reconstruction Techniques, Theo Alexopoulos29/11/24

3. Karimaki’s Method:

Karimäki’s approach starts from the simplified expression of the residuals di introduced by Chernov and Ososkov and 

considers a χ2 with weighted residuals:

The weights can for instance contain measurement uncertainties if they are not the same for all measurements (xi,yi).
The χ2 function is minimized with respect to a set of circle parameters with Gaussian behaviour: the curvature κ = 1/R, 

the impact parameter ϵ (the distance from the origin to the point of closest approach of the fitted circle), and the 

direction φ of the tangent of the circle at the point of closest approach. Using this set of parameters, the simplified 

residuals are expressed as:

where ri and φi are the polar coordinates of measurement i. The residuals can be written as:
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Karimaki’s Method:from previous page…

Continue...

Using these definitions, the χ2 can be written as:

with the approximation 1 + κϵ ≈ 1, ^χ2 can be minimized instead of χ2, leading to a set of equations with solutions:

The variances and covariances of the 

measurements x, y, z=x2+y2 are given by:

The curvature k and impact parameter ϵ are given by:
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Karimaki’s Method:from previous page…

Using these definitions, the χ2 can be written as:

with the approximation 1 + κϵ ≈ 1, ^χ2 can be minimized instead of χ2, leading to a set of equations with solutions:

The variances and covariances of the 

measurements x, y, z=x2+y2 are given by:

The curvature k and impact parameter ϵ are given by:
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Kalman Filter 
• Tracking method in 2-D using Kalman filter

Continue...

from previous page…

1. Define a track with slope b and intercept a where are unknown, track model y = ax + b; x 

plays the role of the time variable.

2. State vector defined as s = (b,a); bk is the y-position of the track at detector position xk.

3. No process noise W = 0, no control-input matrix B = 0.

4. State update a → a, b → b + a Δx with Δx = xk - xk-1

5. For the initial guess make a χ2 fit through the first two points (the track seed).

6. Result is the parameter for x = 0, can then propagate to second point. 

7. First step of Kalman filter is then to propagate to the third point – the first new measurement.

8. Measurement is the y – position. Hksk gives the expected measurement.

9. For s = (b,a), thus Hk = (1 0) projects out of position.
10.Define Kalman gain:
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Application: Lorentz angle in micromegas

garfield simulation

• At the steady state, the general expression of 

the drift velocity υD = <υ> can be derived by 

the equation of motion of an electron under 

the influence of electric and magnetic fields

and a friction due to multiple scattering of the 

drift electron with the gas: 
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Kalman Filter 
• Problem definition

Kalman filters are used to estimate states based on linear dynamical systems in state space format. The process 

model defines the evolution of the state from time 𝑘 − 1 to time 𝑘 as:

where 𝐹 is the state transition matrix applied to the previous state vector sκ-1, 𝐵 is the control-input matrix applied to 

the control vector 𝒖κ-1, and 𝒘κ-1 is the process noise vector that is assumed to be zero-mean Gaussian with the 

covariance W, i.e., 𝒘κ-1 ~ 𝒩(0,W). The process model is paired with the measurement model that describes the 

relationship between the state and the measurement at the current time step 𝑘 as:

where mk is the measurement vector, 𝐻 is the measurement matrix, and υk is the measurement noise vector that is 

assumed to be zero-mean Gaussian with the covariance R, i.e., υk ~ 𝒩(0,R).

The role of the Kalman filter is to provide estimate of sk at time 𝑘, given the initial estimate of s0, the series of 

measurement, m1, m2 ,…,mk, and the information of the system described by F, B, H 𝐹, W, and R. 

Continue...

from previous page…
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Kalman Filter 
• Kalman filter algorithm

Kalman filter algorithm consists of two stages: prediction and update. Note that the terms ‘prediction’ and ‘update’ are 

often called ‘propagation’ and ‘correction’, respectively. The Kalman filter algorithm is summarized as follows:

Continue...

from previous page…

In the above equations, the hat operator, ,̂ means an estimate of a variable. That is, 𝒙^, is an estimate of 𝒙. The 

superscripts – and + denote predicted (prior) and updated (posterior) estimates, respectively. The predicted state 

estimate is evolved from the updated previous updated state estimate. The term S is called state error covariance.

Kalman filters are derived based on the 

assumption that the process and 

measurement models are linear, i.e., they can 

be expressed with the matrices F, B, and H, 

and the process and measurement noise are 

additive Gaussian. 



29/11/24 61Data Analysis and Reconstruction Techniques, Theo Alexopoulos

Kalman Filter 
• Tracking method in 2-D using Kalman filter

Continue...

from previous page…

1. Define a track with slope b and intercept a where are unknown, track model y = ax + b; x 

plays the role of the time variable.

2. State vector defined as s = (b,a); bk is the y-position of the track at detector position xk.

3. No process noise W = 0, no control-input matrix B = 0.

4. State update a → a, b → b + a Δx with Δx = xk - xk-1

5. For the initial guess make a χ2 fit through the first two points (the track seed).

6. Result is the parameter for x = 0, can then propagate to second point. 

7. First step of Kalman filter is then to propagate to the third point – the first new measurement.

8. Measurement is the y – position. Hksk gives the expected measurement.

9. For s = (b,a), thus Hk = (1 0) projects out of position.
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