GASEOUS DETECTORS PHYSICS II "BEYOND STABILITY POINT"

DRD1 Gaseous Detectors School

CERN November 27 - December 6, 2024

Piotr Gasik

Why studying gas discharges in gaseous detectors?

- Gas discharge physics is one of the best-known fields of modern physics
- >200 years since the discovery of the arc discharge by V.V. Petrov
- Still, the main limiting factor for the stable operation of gaseous detectors
- Understanding gas discharges helps to avoid their occurrence and mitigate their effects!

GAS DISCHARGE PHYSICS

(brief overview of 200 years of research)

Basics

4

IV

© wikipedia.org

A.C. Melissinos, "Experiments in modern physics", Academic Press (1966) NY

750

100

500

Voltage, volts

250

0

Two discharge categories

- Non self-sustaining
- Self-sustaining

5

In the continuous discharge region, a steady discharge current flows. The applied voltage is so high (breakdown voltage $V_{\rm S}$) that, once ionization takes place in the gas, there is a continuous discharge of electricity, so that the detector cannot be used for radiation detection.

Townsend mechanism

6

• Go back to the principles: Townsend **first** ionization coefficient α

The number of electrons produced by an electron per unit

length of path in the direction of field

 $N = N_0 e^{\alpha d}$ $I = I_0 e^{\alpha d}$

• $e^{\alpha d}$ – electron avalanche

(number of electrons produced by one electron travelling from cathode to anode)

Townsend second ionization coefficient β

ionization by positive ions, can be neglected ($\beta \approx 0$)

7

- Third Townsend coefficient: electrode surface ionization coefficient γ
- Cathode plays an important role in gas discharges by supplying electrons for the initiation, sustenance and completion of a discharge
- Metal, under normal conditions: electrons are not allowed to leave the surface as they are tied together in the lattice
- Metal work function:
 - the energy required to knock out an electron from a Fermi level
 - characteristic of a given material.

Thermionic emission

- Electron thermal energy not sufficient to leave the surface at room temperature
- Above ~1500 K electrons will receive energy from the violent thermal lattice vibration, sufficient to cross the surface barrier and leave the metal

• Saturation current density:
$$J = A_G T^2 e^{-W/kT}$$
 with $A_G = \lambda_R A_0$ and $A_0 = \frac{4\pi m k^2 q_e}{h^3}$

W – work function, *T* – temperature, λ_R – material-specific constant, A_0 – universal constant

• Current density increases with decrease in work function and increase in temperature.

Field enhanced thermionic emission - Schottky effect

• If a strong electric field *E* is applied between the electrodes, the effective work function of the

cathode decreases by $\Delta W = \sqrt{q_e^3 E / (4\pi \varepsilon_0)}$

9

- Saturation current density: $J = A_G T^2 e^{-(W \Delta W)/kT}$
- Wide range of temperature and electric fields

Fowler-Nordheim tunnelling – field emission

 For the fields >10⁸ V/m the cathode surface barrier becomes very thin and quantum tunneling of electrons occurs which leads to field emission even at room temperature.

Secondary emission

- Electron emission by a positive ion and excited atom bombardment
- Effective secondary emission by a positive ion with energy E_{ion} ≥ 2W (one electron will neutralize the bombarding positive ion and the other electron will be released)
- The additional current due to the presence of positive ions
 - Electrode surface ionization coefficient γ

number of positive ions arriving at the electrode surface

Secondary emission

- Electron emission by a positive ion and excited atom bombardment
- Effective secondary emission by a positive ion with energy E_{ion} ≥ 2W
 (one electron will neutralize the bombarding positive ion and the other electron will be released)
- The additional current due to the presence of positive ions and photons ($h\nu > W$)
 - Number of photons approximately proportional to number of positive ions at breakdown electric field strength
 - Common secondary emission coefficient γ

 $= \frac{\text{number of released free electrons from the electrode surface}}{\text{number of positive ions}}$

Townsend mechanism

- There may be more than one mechanism producing secondary ionization in the discharge gap, $g = g_1 + g_2 + g_3 + ...$
- $\gamma = f(E/p, \text{ electrode material, surface condition, gas})$
- Townsend avalanche:

$$N = \frac{N_0 e^{\alpha d}}{1 - \gamma (e^{\alpha d} - 1)} \qquad I = \frac{I_0 e^{\alpha d}}{1 - \gamma (e^{\alpha d} - 1)}$$

- Theoretically, the current become infinite when $\delta = \gamma (e^{\alpha d} 1) = 1$
- Practically:
 - limited by the resistance of the external circuit
 - limited partially by the voltage drop in the arc
- Townsend breakdown criterion
 - $-\delta$ < 1 current flow is not self-sustained.
 - δ = 1 self-sustained discharge.
 - δ > 1 ionization produced by successive avalanche is cumulative. Discharge grows more rapidly.
- After gas breakdown the form of the discharge is related to the shape of the electrodes, geometric distance, pressure and external circuits.

1 - q

Paschen's law

- Discovered empirically in 1889
- Analytic expression of gas breakdown potential in a <u>uniform</u> electric field.
- Derived from the 1st Townsend coefficient $\frac{\alpha}{P} = A \exp\left(-\frac{B}{E/P}\right)$ and breakdown criterion $\delta = \gamma \left(e^{ad} 1\right) = 1$

$$V_{
m S} = rac{Bpd}{\ln(Apd) - \ln \left[\ln \left(1 + rac{1}{\gamma_{
m se}}
ight)
ight]}$$

- If the type of gas and the cathode material are known, A, B, and γ are known constants,
 V_s is only the function of the *Pd* product
- The equation loses accuracy for gaps $\mathcal{O}(10 \ \mu\text{m})$ at atmospheric pressure

15

- Record current / and potential V, for different gas pressure P and temperature T
- Current reflects a discharge: charge separation
- Watch through the glass tube

Different types of discharges

• Breakdown voltage V_s reached

- Circuit with current limitation:
 - inhomogeneous field
 - homogeneous field with high series resistance

- Observed effects
 - pre-discharges, corona
 - visible glow

V

https://www.plasma-universe.com/electric-glow-discharge/

- In strongly non-uniform fields
 - around sharp points or wires
- A radiant corona around the critical region
 - indication of defects in the system
- Can be a special case of either glow or arc discharge
- "Single-electrode discharge"
- Possibly caused by secondary photo-processes in the gas near the wire

- Low pressure, current limited circuit:
 - relatively low currents
 - radiant column between electrodes (neon light)
- Weakly ionised gas, mainly neutral: non-equilibrium plasma
 - $E_{\rm e} >> E_{\rm gas}$
 - $T_{\rm e} (10^4 \text{ K}) >> T_{\rm gas}$
- Gas does not get hot
- Feedback: secondary emission from the cathode by ion bombardment

- Ambient pressure, no current limit ٠
 - bright column between electrodes
 - high current
- Thermal equilibrium plasma
 - $-T_{\rm e} \sim T_{\rm gas} > 10^4 \, {\rm K}$
 - High ionisation
- Feedback: thermionic knock-out of ٠ electrons from the cathode

Electric discharge regimes

Full breakdown

• Breakdown voltage V_S reached

- Circuit without current limitation:
 - homogeneous field
 - low series resistance

- Observed effects
 - voltage collapse
 - complete breakdown

22

- A full breakdown of inter-electrode gap
- Strongly ionized plasma channel between electrodes
- Unstable electrical state (exhibits discontinuity, not uniform plasma)
- High light emission
- Temperature O(10³-10⁴ K), high-pressure area formation and its movement – explosive phenomenon; noise due to thermal shock wave
- Non-continuous: duration $\mathcal{O}(10-1000 \text{ ns})$

- Townsend suggested secondary emission from the cathode as the main mechanism of a spark creation
 - Discharge time-lag $\mathcal{O}(100 \text{ ns})$ cannot be explained by the secondary emission which requires t \sim 50 μ s
 - No correlation with cathode material
 - Avalanches not only start from the cathode also anode or any other position between the electrodes

- H. Raether, L.B. Loeb, J.B. Meek streamer theory of spark discharge
 - Improvement of the Townsend discharge theory (derived from the latter)
 - Electron impact ionization (determined by an α process of Townsend discharge),
 - Photoionization
 - Space-charge electric field effect caused by the avalanche
 - Breakdown caused by a single electron avalanche.

Streamer theory

Following: D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

- A single *e* starting at the cathode builds up an avalanche (ionization) that crosses the gap
- Electrons in the avalanche move very fast compared to the ions (regarded as stationary)
- The space-charge E-field will cause significant distortions which
 - strengthen the electric field of the head and tail parts of the electron avalanche
 - weaken electric field between the positive and negative charge regions

- **Raether criterion:** $Q_{max} = e^{\alpha d} > 10^8$ is the condition for streamer formation and self-sustained discharge (as in Townsend)
- Meek criterion: radial E-field intensity of the space-charge (head of the avalanche) is ~equal to the applied field;
 (Supplemented by Loeb condition on the electron density in the avalanche of 0.7 × 10¹² cm⁻³ to ensure sufficient photoionisation)

Streamer theory

Following: D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

- Applied voltage ~breakdown voltage (V_S) \Box positive streamer formation
- The electron avalanche is through the whole space, E-field of the tail is greatly strengthened
- Photon radiation
 photoionization
 secondary electron avalanche (b)
- Electrons form negative ions \Box creation of a plasma stream (c)
- Streamer has a good conductivity, strong electric field in front, process grows rapidly
- When streamer reaches the cathode, gap breakdown is completed (d)

Streamer theory

Following: D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

- Applied voltage > breakdown voltage (*V*_S) \Box **negative streamer formation**
- No need for the electron avalanche to go through the gap
- Ionization degree of the avalanche head part sufficient to form a streamer (photon emission)
- Streamer develops towards the anode (volume- and photoionization)
- Expansion speed of of the streamer much larger than avalanche

GASEOUS DETECTORS DISCHARGES

Discharges in wire counters

• Operation beyond proportional mode

- Geiger mode
- Poorly quenched gases, low pressures
- Photon mediated avalanche propagated in both directions along the wire
- Quenched with an external circuit (R) or space-charge effects (quenched gases)

- Self-sustained discharges (glow/corona)
- Sustained discharge due to ion feedback mechanism (Townsend discharge)
- He, Ne mixtures at atmospheric pressure (gain 10⁴-10⁵) glows below sparking limits
- Quality, cathode, quencher □ crucial!

Discharges in wire counters

• Operation beyond proportional mode

- Self-Quenched Streamer (SQS) mode
- Thick anode wires, hydrocarbon-rich mixtures
- Streamer development, dumped before reaching the cathode
- Radial fields, 1/r dependency allows to quench streamers

• Sparking limits

- When the critical charge ($\sim 10^8$) is reached streamer mechanism
- Enhanced by secondary emission from the high field regions in the cathode plane or Malter effect
- Can be destructive, depending on the stored energy

Discharges in parallel-plate avalanche counters

- Both Townsend (slow) and Streamer (fast) breakdown modes observed
- In uniform, parallel fields streamer develops until spark channel is created (no SQS, full breakdown)
- Transition depends on the gas composition (photon feedback)
- Critical charge for streamer/spark development $\sim 10^8$ (Raether limit?), but:
 - Differences up to factor of 5; quencher dependency (?) \Box no universal limit?

Quencher pressure (Torr)

M. Abbrescia, P. Fonte, V. Peskov, Wiley-VCH Verlag GmbH & Co. KGaA, 2018

Resistive plate chambers

See lecture by R. Santonico (link)

- Material with high volume resistivity
- Drop of the electric field around the initial avalanche

• Charge Q_0 that enters the resistive electrode:

 $Q(t) = Q_0 e^{-t/\tau}$ with $\tau = \rho \varepsilon_0 \varepsilon_r$

• With $\rho \approx 10^{10} - 10^{12} \Omega$ cm, $\tau \approx 0.01 - 1 s$

• Remaining counter area remains sensitive to particles

© Courtesy of I. Deppner, GSI

RPC -- Streamer development by photon feedback

- The transition from a proportional avalanche to a streamer at $Q_{crit} \approx 10^8 e \rightarrow discharge channel creation$
- The released energy is strongly limited by the resistance of the plate!
- Reduce photon feedback and the avalanche growth with a properly quenched mixture (e.g. C₂F₄H₂, SF₆, ...)

Following: V. Peskov, "Discharge phenomena in gaseous detectors", RD51 Meeting, Munich 2018 (link)

- In all these structures, there are regions with ~parallel field lines ٠
- Streamers can develop by the same mechanism as in PPAC ٠
- No quenching by field reduction, when streamers reaches the cathode [] full breakdown

F. Sauli, IEEE NSS 2002

J. Merlin, "Single-hole discharges in GEMs", RD51 Meeting, TUM 2018 (link)

M. Chefdeville (NIKHEF), "The pixel readout of TPCs", (link)

J.Galan, RD51 meeting (link)

- In case of MPGDs we discuss mainly the (positive) streamer mechanism and a spark discharge
- Critical charge measurements in MPGDs point to a limit of 10⁶-10⁷ e, depending on the reference
- Different geometries, gases, source (x-ray, alphas)

F. Sauli,	Report at the RD51 collaboration meet DETECTOR	ting in Amsterda MAX GAIN	m, 2008 MAX CHARGE
i	MSGC	2000	4 10 ⁷
ii	ADV PASS MSGC	1000	2 10 ⁷
iii	MICROWELL	2200	4.4 10 ⁷
iv	MICROMEGAS	3000	6 10 ⁷
v	GEM	2000	4 10 ⁷

- Clear gas dependencies
- Abrupt drop of discharge rate for source distances larger than alpha range
- Clear correlation between discharge rate and $\langle Z \rangle$ of a gas mixture \rightarrow primary charge density
 - Alpha range in Ne longer than in Argon
 - *W*_i (Ar) < *W*_i (Ne)

Critical charge in different gases

- GEANT4 based model describes data fairly well over several orders of magnitude
- Only primary ionization and basic gas properties taken into account (D_L, D_T, v_d)

- Primary charge density → driving factor for discharge formation
- Different Q_{crit} for different gases \rightarrow no universal limit.
- See also studies by S. Procureur NIM A621 (2010) 177

*Q*_{crit}

- Primary charge density is a more relevant parameter than the total number of electrons
- Source inclination studies higher charge densities per hole for perpendicular tracks impinging a GEM
- B||E studies reduced transverse diffusion higher charge density arriving at GEM holes

THGEM results

- THGEMs are large (robust, inexpensive) version of GEMs
 - \rightarrow ~10× larger in each direction
- Discharge probability in THGEMs higher than in GEMs
 - \rightarrow ~100× less holes, same electron collection

Gas	THGEM	GEM
	$\langle Q_{\rm crit} \rangle$ [×10 ⁶ e]	$Q_{\rm crit}$ [×10 ⁶ e]
Ne-CO ₂ (90-10)	7.1 ± 2.2	7.3 ± 0.9
Ar-CO ₂ (90-10)	4.3 ± 1.5	4.7 ± 0.6
Ar-CO ₂ (70-30)	2.5 ± 0.9	-

- Gas dependency observed again!
- Q_{crit} for both structures agree with each other, in spite of geometrical differences
- The primary charge limits shall be considered per single holes, not normalized to the hole volume.

Micromegas case

39

- Discharge rate scales with the mesh cell size
 - \rightarrow mesh cell as an independent amplification structure
- Open geometries (e.g. Micromegas): UV photons feedback may lead to a Townsend discharge
 - \rightarrow well-quenched gases preferable but watch out charge

- Light noble gases are preferable
- Quencher content optimize primary charge density and electron transport properties.
- Open geometries (e.g. Micromegas): UV photons feedback at high gains may lead to a Townsend discharge
 - → well-quenched gases preferable but watch out charge densities!
- Reduce gain as much as allowed by the signal-to-noise ratio requirements
 - → trivial but most efficient method to minimize the discharge probability,

$$G_{\max} = \frac{Q_{\text{crit}}}{N_{\text{primary}}}$$

Build stacks – diffuse primary charge

- GEMs are easy to stack
 - Pre-amplification stage lower gain of single structures
 - Charge spread between independent holes Q_{crit} per hole stays the same!
 - Small pitches preferable (more holes more sharing)
- GEM + MMG hybrids and multi-MMG stacks

NIM A 834 (2016) 149 and NIM A 976 (2020) 164282, NIM A 623 (2010) 94

- Clear influence of the pre-amplification stage on the stability of MMG
- Lower charge densities reach (subsequent) MMG stages
- Mesh cell as an independent amplification structure (see also JINST 18 (2023) C06011)

Optimized HV settings

Lower gain towards the bottom of a stack to increase overall stability! NIM A 479 (2002) 294

Use resistive layers

- Allow for charge sharing and create self-quenching mechanism
- Delay the charge evacuation and force local field reduction \rightarrow rate capabilities ٠

Resistive MICROMEGAS (NIM A 629 (2011) 66, NIM A 1025 (2022) 166109)

- Reduces the charge released by MMG during spark formation. ٠
- Provides spark protection to electronics

New structures: µRWELL (JINST 10 (2015) P02008)

- Single sided Gaseous Electron Multiplier (THGEM) ٠
- Coupled to the readout anode through material of high bulk resistivity ٠
- High rate capabilities restored by proper grounding of the DLC layers ٠
- Single amplification stage ٠
 - --> material budget, simplicity, industrialization, costs!

resistive anode MicroMegas

MPGD design good practices

- Segmentation
 - Reduce area \Box capacitance
 - Reduce energy of a discharge
 - Minimize dead time

- Careful detector design avoid high fields!
 - Rounded corners
 - Electrode edge effects
 - Hole rim

© S. Dalla Torre, F. Tessarotto (INFN)

Further reduction of stability

High fields, cathode material quality may further reduce stability of your detector

D.S. Bhattacharya, RD51 Meeting, Sep. 2018 (link)

- High E-fields present in amplification regions (the curse of Micro-Patterns); can easily double/triple the average ٠
- Detector QA of the highest importance: cannot analyze the entire surface \Box HV tests @ Paschen limit ٠ (for MPGDs see ALICE JINST 16 (2021) P03022, CMS NIM A 1034 (2022) 166716, ATLAS NIM A 1026 (2022) 166143)

D.S. Bhattacharya, RD51 Meeting, Sep. 2018 (link)

© ALICE

٠

HV scheme optimization

- HV system ٠
 - Passive/active/stabilized voltage divider \rightarrow safest, reduced flexibility —
 - Independent HV channels \rightarrow full flexibility, tripping times may cause fatal results
 - Cascaded power supply \rightarrow full flexibility, no overvoltage possible by design, costly _

- HV scheme optimization
 use of protection resistors
 - Reduce currents
 - Quench secondary discharge development
 - Reduce and decouple parasitic capacitances parallel to MPGDs and _ transfer gaps in the MPGD stacks

(RLC design rules, see e.g. JINST 14 (2019) P08024)

Ne-CO₂-N₂ (90-10-5)

#8.0 nF

t 8.0 8.0

econdi econdi

(K. Flöthner, MSc thesis, Bonn 2020) (J. Krauß, MSc thesis, Bonn 2024)

8.0 nF

6000 E_{ind} [V/cm]

- Discharge probability could be reduced if a radial shape E-field is formed in the MPGD avalanche gap
- Both simulation and R&D effort. Still need for optimization, but ideas on the market!

Summary

- Gas discharge mechanisms in MPGDs well-understood
- Fundamental gas limits for streamer/spark formation: Q_{crit}
- Avoid streamer development by lowering primary charge, charge sharing, avalanche quenching methods, and shaping of the electric field.
- Instabilities caused by defects/ageing/contamination can be avoided by good design practices and quality assurance/control methods
- To do: more modelling work on discharge development, e.g.:
 - Simulation of an avalanche process and its transition to a streamer (Garfield++)
 - Understand discharge probability and Q_{crit} values obtained with different geometries
 - Simulation model describing secondary (propagated, delayed) discharges developing in the gaps between subsequent foils in a stack.

BACKUP SLIDES

49

schen's law

$$V_{\rm S} = \frac{Bpd}{\ln(Apd) - \ln\left[\ln\left(1 + \frac{1}{\gamma_{\rm se}}\right)\right]}$$

$$V_{\rm s} = \frac{B(pd)}{C + \ln pd}, \quad \frac{E_{\rm s}}{p} = \frac{B}{C + \ln pd}, \quad C = \ln\frac{A}{\ln(1/\gamma + 1)}$$

- There exists the minimal breakdown voltage for a discharge gap
- V_{min} and (*Pd*)_{min} dependent on cathode material
- *E/p* at the minimum
 maximum ionization capability of electrons
 (Stoletov's point)
- Right from the minimum E_s/p decreases slowly, V_s increases almost proportionally to *pd*. At increased *pd* electron can still produce ionizing collisions even at not very high E/p
- Left from the minimum possibilities for collisions are very limited. Very high fields (and α/p) are required for necessary amplification

D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

New RPC mixtures

See lecture by M. Abbrescia (link)

- $C_2F_4H_2$ and $SF_6 \rightarrow$ very high Global Warming Potential (GWP) of 1300 and 23800, resp.
- Finding a substitute requires compromises: working point, resolution, efficiency, currents, streamer probability
 - E.g. replacement of Tetrafluoroethane with HydroFluoroOlefyns (HFOs) increases working point. Adding CO₂ increases streamer probability and RPC currents

R. Guida, B. Mandelli, G. Rigoletti, NIM A 1039 (2022) 167045

Secondary discharge formation*

Discharge in the transfer/induction gap appearing $\mathcal{O}(1-10)$ µs after the primary spark

- Leading theory: heating of the cathode after the primary discharge
 - A. Deisting, et al. NIM A 937 (2019) 168
 - A. Utrobicic, et al. NIM A 940 (2019) 262
- Mitigation strategies established quenching with external R elements, C reduction ------
 - L. Lautner, PG, et al. JINST 14 (2019) P08024
 - A. Deisting, C. Garabatos, PG, et al. NIM A 937 (2019) 168

a) Primary discharge

* See pioneering studies by S. Bachmann et al. NIM A479 (2002) 294 & V. Peskov, P.Fonte (2009) arXiv:0911.0463

Discharge spectroscopy

B. Ulukutlu et al., NIM A 1019 (2021) 165829 + update

- Measuring emission spectra of the light emitted during primary discharges
- Cu and Al emission lines observed in GEM discharges
- vaporisation \rightarrow presence of foil material in discharge plasma
- THGEMs with various electrodes \rightarrow no emission lines corresponding to foil cladding
- No or strongly reduced material vaporisation from discharges in THGEM hole geometry → lower temperature reached?
- Secondary discharges still prevalent in THGEMs
- No direct connection between material vaporisation and secondary discharge formation
- Influence of the cathode material properties or surface quality

(Mo, polished Cu exceptionally stable)

Secondary discharge formation - hypothesis

- Transition between Townsend discharge and Streamer discharge?
 - Dependence on gas (α process) and cathode? (γ process feeding)
 - Time lag $\mathcal{O}(10\ \mu\text{s})$ with a rapid full gap breakdown

- Townsend mechanism initiated by electrons from a primary discharge;
- Secondary emission from the heated cathode;
- Space charge accumulation at the anode;
- Transition to a streamer.

GSI, TU München

- Various coating materials used to study their influence on GEM performance
- Search for ultra-stable configuration for applications using extreme HV settings (e.g. single-photon detectors,)

- The preliminary results with the Molybdenum layers point to the surface quality as a possible driving factor for enhanced stability.
- Surface studies in preparation (profilometer at CERN, AFM in Pisa)

THGEM results

DRD1 Gaseous Detector Technologies

- THGEMs are large (robust, inexpensive) version of GEMs
 - \rightarrow ~10× larger in each direction

- Gas dependency observed again!
- Q_{crit} for both structures agree with each other, in spite of geometrical differences
- The primary charge limits shall be considered per single holes, not normalized to the hole volume.

 $[\times 10^{6} e]$

 7.1 ± 2.2

 4.3 ± 1.5

 2.5 ± 0.9

Ne-CO₂ (90-10)

Ar-CO₂ (90-10)

Ar-CO₂ (70-30)

 $[\times 10^{6} e]$

 7.3 ± 0.9

 4.7 ± 0.6

_

56

10⁻³ **Discharge Probability** 10⁻⁴ Ar-CO₂ 90-10 Source: Alpha 10⁻⁵ $E_{\rm drift}$ = 150 V/cm $d_{\text{source}} = 31.5 \text{ mm}$ 730 LPI, T_{opt} = 39.5% ■ 640 LPI, *T*_{opt} = 39.5% Size of MMG cell ▲ 400 LPI, *T*_{opt} = 51.0% 10⁻⁶ ▼ 230 LPI, *T*_{opt} = 52.0% 10³ 10⁴ Effective Gain

- Discharge rate scales with the mesh cell size (optical transparency)
- Mesh cell as an independent amplification structure

Gas in MMG

• Discharge curves in different gases cannot be explained with one Q_{crit}

[©] M. Chefdeville, PhD Thesis (2009), IRFU/CEA

Resistive layers – running horse of RPC technology

- Material with high-volume resistivity → drop of the electric field around the initial avalanche → remaining counter area remains sensitive to particles
- In normal operation:
 - the strong space charge created within the gas avalanche limits the avalanche's growth
 - quenching with molecular and electronegative gases
 - → streamer probability reduced, but non-zero!
- For high-rate capabilities, reducing ρ can be beneficial
 - See e.g. talks by M. Petris (Monday) and I. Deppner (Tuesday)
- With moderate-resistive materials, a glow discharge may develop!

Resistive MPGDs

- Allow for charge sharing and create self-quenching mechanism
- Delay the charge evacuation and force local field reduction \rightarrow rate capabilities

Resistive MICROMEGAS (*NIM A 629 (2011) 66, NIM A 1025 (2022) 166109*)

- Reduces the charge released by MMG during spark formation.
- Provides spark protection to electronics
- Standard solution for many MMG-based detectors
 (e.g. ATLAS NSW: Mod. Phys. Lett. A28 (2013) 1340020, NIM A 640 (2011) 110, T2K TPC Upgrade NIM A 957 (2020) 163286, ...)

Resistive WELL and Resistive Plate WELL (JINST 7 (2012) C05011, JINST 8 (2013) P11004)

- Resistivity: 16 M Ω / \Box (RWELL), 2.10¹⁰ Ω cm (RPWELL)
- Stable operation at gains of up to a few 10⁴ (with gain drop corrections!)

Embedded resistors (JINST 12 (2009) P12004, NIM A 824 (2016) 510)

- Control of the resistance through R-pattern
- Tuned for minimal charge-up & spark suppression

780

V_{WELL} (V)

2×10⁴ THWELL gain

800

820

840

10⁵

128µm

50

6×10³

760

New structures: micro-RWELL

G. Bencivenni et al., JINST 10 (2015) P02008

- Single-sided Gaseous Electron Multiplier (GEM) coupled to the readout anode through the material of high surface resistivity
- Single amplification stage → material budget, simplicity, industrialization, costs!
- Resistive layer → suppression of the transition from streamer to spark, with a consequent reduction of the spark amplitude.
- Drawback \rightarrow the capability to stand high particle fluxes is reduced.

New structures: micro-RWELL

G. Bencivenni et al., JINST 14 (2019) P05014

- Single-sided Gaseous Electron Multiplier (GEM) coupled to the readout anode through the material of high bulk resistivity
- Single amplification stage → material budget, simplicity, industrialization, costs!
- High-rate capabilities restored by the proper grounding of the DLC layers → improved charge evacuation
- Thorough optimisation, including surface discharge considerations
 - \rightarrow concept of the distance-of-closest-approach crucial for stability!

- Rate capabilities of up to 10 MHz/cm² demonstrated
- Discharge probability of a single micro-RWELL stage compatible with a

triple GEM setup operated at stability-optimised HV settings

New concepts with DLC layers

- DLC (TH)GEMs, Micromegas, ...
 - clear discharge quenching mechanism observed
 - influence of resistive layers on discharge propagation \rightarrow to be studied
 - coating of THGEM holes allows for minimising the charging-up effect!
- sRPC Surface RPC (M. Giovannetti, MPGD2022)
 - Single gap (2 mm) geometry
 - $-\,$ Baseline (low-rate) version: stable operation with ϵ = 95% and $\Delta\tau$ = 1 ns
 - High-rate version, with conductive grids, is being developed
 - ($\epsilon \approx 90\%$ with 1 kHz/cm² X-rays, with some instabilities)
- DLC-RPC for MEG II (J. Phys.: Conf. Ser. 2374 (2022) 012143, A. Ochi MPGD2022)
 - Single- and multi-gap (~ 400 μm), ultra-low mass design (< 0.1% X_0)
 - 85% MIP efficiency achieved with multi-layers, $\Delta\tau\approx$ 170 ps at 1-10 kHz/cm²
 - 45-50% efficiency at 1 MHz/cm² !
 - New developments ongoing (HV feed lines)

-HV

Insulator substrate

DLC

22 4 - 680G DLC-THGEM 20 - 210 DLC-THGEM 10 - 210 DLC-THGEM 11 - 617 DLC-THGEM 12 - 710 DLC-THGEM 13 - 6.710 DLC-THGEM 14 - 310 DLC-THGEM 14 - 310 DLC-THGEM 12 - 310 DLC-THGEM 12 - 310 DLC-THGEM 13 - 6.710 DLC-THGEM 14 - 310 DLC-THGEM 14 - 310 DLC-THGEM 14 - 310 DLC-THGEM 14 - 310 DLC-THGEM 3 - 310 D

> 100 Time(min)

1000

~160 µm-thick spacers (2.5 mm pitch)

NIM A 958 (2020) 162759

10

Stability challenges of MPGD TPCs

TPCs at high-rates (e.g. ALICE TPC @ 50 kHz Pb-Pb)

- Direct rate of impinging particles O(10 kHz/cm²)
- Expected loads from the full drift, after amplification $\mathcal{O}(10 \text{ nA/cm}^2)$
- Highly ionizing fragments
- Unprecedented challenges in terms of loads and performance (low IBF)

Baseline solution: 4-GEM stack

- Combination of standard (S) and large pitch (LP) GEMs
- Highly optimized HV configuration
- Result of intensive R&D
- Stability of a GEM stack operated in low-IBF mode can be restored by adding 4th GEM

Few words on tracker rate capabilities

- (Multi-MPGD) Trackers at moderate gains O(104)
- Short drift gap O(mm), Ar-based mixtures, evacuation of primary electrons in O(100 ns)
- No pile-up expected in a single GEM hole in cm^2 area for rates $\gg 1 \text{ MHz/cm}^2$
- Up to a few electrons/hole expected (MIP)
- Troublemakers
- Highly Ionizing fragments (N_{prim, α} = 10⁴ × N_{prim,MIP})
- High neutron doses (e.g. ~10¹³ n.eq./cm²/year in future CBM@FAIR GEMs)
- Charge densities in the bottom MPGD, after full amplification!
- Stability of the system relies on the stability of a single amplification structure (e.g. GEM)

MPGD trackers at future colliders

Experiment / Timescale	Application Domain	Gas Detector Technology	Total detector size / Single module size	Operation Characteristics / Performance
LHeC COLLIDER MUON SYSTEM at HL-LHC	Electron – Proton Collider Tracking/Triggering	RPC / MDT	Total area ~ 400 m² Single unit detect: 2-5 m²	Max.rate: 3 kHz/cm ² Time res.: ~0.4 ns Rad. Hard.: 0.3 C/cm ² Spatial res.: 1mm (RPC) 80 μm (MDTsingle ube)
FCC-ee and/or CEPC IDEA PRESHOWER DETECTOR START: >2030	Lepton Collider Tracking	µ-RWELL	Total area: 225 m² Single unit detect: (0.5x0.5 m ²⁾ ~0.25 m ²	Max. rate: 10 kHz/cm ² Spatial res.: ~60-80 µm Time res.: 5-7 ns Rad. Hard.: <100 mC/cm ²
FCC-ee and/or CEPC IDE A MUON SYSTEM START: >2030	Lepton Collider Tracking/Triggering	μ-RWELL RPC	Total area: 3000 m² Single unit detect: ~0.25 m²	Max. rate: <1 kHz/cm ² Spatial res.: ~150 µm Time res.: 5-7 ns Rad. Hard.: <10 mC/cm ²
FCC-hh COLLIDER MUON SYSTEM START: > 2050	Hadron Collider Tracking/Triggering	All HL-LHC technologies (MDT, RPC, MPGD, CSC)	Total a rea: 3000 m ²	Max. rate: < 500 kHz/cm ² Spatial res.: <100 µm Time res.: < 3 ns Rad. Hard.: ~ C/cm ²
MUON COLLIDER MUON SYSTEM START: > 2050	Muon Collider	RPC or new generation fast Timing MPGD	Total area: ~ 3500m² Single unit detect: 0.3-0.4m ²	Max.rate: <100 kHz/cm ² Spatial res.: ~100µm Time res.: <10 ns Rad. Hard.: < C/cm ²

Challenges

- High-rate capabilities, radiation hardness (ageing) and stability of large-area trackers
- Large areas, simple construction, industrialization → low cost
- Reliability and efficiency with suitable
 low GWP mixtures

H. Fribert et al. JINST 18 (2023) C06015 + RD51 Coll. Meeting + Preliminary to be published

Global picture

GEM stacks

- GEMs are easy to stack
 - Build stacks, share charge between subsequent structures
 - Pre-amplification stage lower gain of single structures
 - Charge spread between several independent holes Q_{crit} per hole stays the same!
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability, e.g.:
 - 4GEM Readout for ALICE TPC (IBF optimized) CERN-LHCC-2013-020, CERN-LHCC-2015-002
 - 5GEM RICH for eIC (stable operation at very high gains) M. Blatnik et al., Trans. on Nucl. Sci. 62 (2015) 3256

Stability of a GEM stack operated in low-IBF mode can be restored by adding 4th GEM. 4GEM spark rates in Ne-CO₂-N₂ (90-10-5), G~2000: • ~10⁻¹⁰ 1/ α • 6.4×10⁻¹² 1/hadron

CERN-LHCC-2015-002

S. Bachmann et al., NIM A 479 (2002) 294.

Hybrid stacks (examples)

Ar-iC₄H₁₀ (90-10)

10³

Gain

MM (HV_d = 600V)

MM-GEM (HV₄ = 950V, ΔV₆₇₀₄ = 300

10

<u>∟</u> 10⁻

10

10-1

- GEM + MMG (e.g. B. Moreno et al, NIMA654(2011)135, S. Procureur et al. JINST 7 (2012) C06009)
 - Clear influence of the pre-amplification stage (GEM) on the stability of MMG
 - Lower charge densities reach MMG (cf. 1 and 2 mm gaps)
 - Confirmed with GEANT simulations
- 2GEM + MMG in low-IBF mode (e.g. E. Aiola et al. NIM A 834 (2016) 149)

Spark rates at G~2000 $3 \times 10^{-7} 1/\alpha$ in Ne-CO₂ (90-10) $2 \times 10^{-8} 1/\alpha$ in Ne-CO₂-CH₄ (82-9-9) $3.5 \times 10^{-10} 1/(150 \text{ GeV } \pi)$ in Ne-CO₂-N₂ (90-10-5)

• COMPASS hybrid THGEM + Micromegas (e.g. F. Tessarotto, RD51 Meeting, Munich 2018 link)

Nominal G ~ 30000 with: THGEM1 gain × T1 ~20 THGEM2 gain × T2 ~15 MMG gain ~100

Moderate gains of single structures

Moderate spark rate in all segments, constant in time

Spark Rates in [2017-04-10:2017-10-23]

Working point optimisation

• Not only discharge stability needs to be optimised. Working point for optimal performance in terms of:

– Gain

- Energy resolution
- Ion-backflow capabilities
- Long-term stability (charging-up)
- Efficiency
- Drift velocity, electron/ion mobility
- Rate capability, time resolution

SIMULATIONS

What we can (Geant)

- JINST 16 (2021) P09001 Spark probability Geant4 Ar+11%iC,H_{ea} (α) Triple GEM Experiment (Bachmann et al.[15] Geant4 Ar+11%iC,H., (Raethe 10 Simulation D. Thers et al. Ar+11%iC_H 10 .≝ 10⁻⁴ 10 NIM A621 (2010) 177 10⁻⁶ └─ -0.4 10^{3} -0.3 -0.2 -0.10 0.1 $\Delta V/V$ JINST 7 (2012) C06009 A 1047 (2023) 167730 d_{source}= 32.0 mm Spark probability charge Probability 10 10 d_{source}= 39.5 mm d_{source} = 59.5 mm 10-3 THGEM Exp Sim 10-3 Ne-CO2 (90-10) 10-Ar-CO2 (90-10) 10³ 10⁴ Ar-CO2 (70-30) 10-Absolute Gain
- Reproduce discharge curves obtained with different MPGDs ٠
- Predict discharge rate with different sources and geometries ٠
- Predict gas effects (more discharges with heavier gases) ٠
- Evaluate discharge limits, incl. discharge dev. time ٠
- Understand the effects related to charge density ٠
 - Stacks (GEMs, GEM+MMG)
 - Magnetic field influence
 - Electric field influence
 - Emission angle, track length, drift lengths
 - Drift and diffusion

NIM A659 (2011) 91

Gain

Gain

What we can (FEM)

- We can simulate streamer formation using a simplified hydrodynamic model (no photoionization, diffusion-assisted streamers).
- The model:

P. Fonte, TUM 2018

- **F** Seems to describe qualitatively fast breakdown in MPGDs
- Gives correct breakdown limit for GEM
- Seems to reproduce SQS in needles
 - Allows to simulate space charge effects, and their time development
- We can optimize geometry, simulate hot spots, etc.

P. Fonte, MPGD Stability workshop, TUM 2018 (link)

IEEE (2015) 1

 $\frac{\partial n_e}{\partial t} + \vec{\nabla} \cdot (\vec{W_e} n_e) = \alpha \left| \vec{W_e} \right| n_e + D_e \nabla^2 n_e$

 $\frac{\partial n_{i+}}{\partial t} = \alpha \left| \vec{W_e} \right| n_e$

 $\nabla^2 V = -\frac{e}{\epsilon}(n_{i+} - n_e)$
The effort needs to continue

- Continue discharge simulations in new MPGD structures with currently available tools/models
- Update the tools/models 🙂
- Discharge development with resistive layers

(more and more experimental data available, see e.g. JINST 17 P11004)

- Simulation model describing secondary (propagated, delayed) discharges developing in the gaps between subsequent foils in a stack.
 - Mechanism \rightarrow still a topic of a debate.
 - Need to understand the entire process and, if possible, to eliminate the cause of these violent events completely.
 - Model development of a primary discharge in a GEM hole and its subsequent transition to a gap discharge, taking into account:
 - Space-charge densities
 - Drift and amplification of charges, ion bombardment
 - Heating of the electrodes ...
 - ... and thermionic emission from the latter.

NIM A 1019 (2021) 165829

PASHEN'S LAW

Paschen's law

- Discovered empirically in 1889
- Analytic expression of gas breakdown potential in a <u>uniform</u> electric field.
- Derived from the 1st Townsend coefficient $\frac{\alpha}{P} = A \exp\left(-\frac{B}{E/P}\right)$ and breakdown criterion $\delta = \gamma \left(e^{ad} 1\right) = 1$

$$V_{
m S} = rac{Bpd}{\ln(Apd) - \ln \left[\ln \left(1 + rac{1}{\gamma_{
m se}}
ight)
ight]}$$

- If the type of gas and the cathode material are known, A, B, and γ are known constants,
 V_s is only the function of the *Pd* product
- The equation loses accuracy for gaps $\mathcal{O}(10 \ \mu\text{m})$ at atmospheric pressure

- V_{min} and (*Pd*)_{min} dependent on cathode material
- *E/p* at the minimum (*B*)
 maximum ionization capability of electrons (Stoletov's point)
- Right from the minimum E_s/p decreases slowly, V_s increases almost proportionally to *pd*. At increased *pd* electron can still produce ionizing collisions even at not very high E/p
- Left from the minimum possibilities for collisions are very limited. Very high fields (and α/p) are required for necessary amplification

D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

MPGD LIMITS

High rates at high gains - limits!

Rate-dependent reduction of maximum gain

- Avalanches overlapping in time + statistical fluctuation of the avalanche size
- Non-zero probability of reaching Q_{crit}

Also other, "cumulative" processes

- Preparation activity
 - current spikes or current increase before breakdown
 - cathode excitation effect and electron jets
- Space charge effects
- See more: V.Peskov, P.Fonte (2009) arXiv:0911.0463

P. Fonte, V. Peskov, Plasma Sources Science and Technology 19 (2010) 034021

Critical charge in MPGDs

In case of MPGDs we discuss mainly streamer mechanism of discharge development and a spark discharge
 Critical charge measurements in MPGDs point to a limit of 10⁶-10⁷ e

Is it one, universal limit?

- No gas dependency studied in details
- Clear dependency on the amplification gap

 charge density?
- Clear dependency on a number of primary electrons n₀

V. Peskov et al., IEEE Nucl. Sci. 48 (2001) 1070

Critical charge in MPGDs

- Clear gas dependencies
- Discharge probability decreases for lighter gases
- Charge density effects
- Charge limits different for different mixtures?

GEANT4 model

Developed by A. Mathis (TUM)

- · Sorting into single GEM holes according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100 % collection efficiency
 - Integrate over arrival time (t_{int}) above a given GEM hole
- Multiplication of the charges inside the GEM holes
 - Use absolute gain from the measurements
 - Count the electrons contained in single GEM holes
- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded → discharge (a'la Raether limit)
- Count such large primary ionisation clusters and normalize to the number of all $\alpha\mbox{-particles}$
 - Discharge probability
- Cut on a discharge pile-up (one alpha max one discharge)
- Not known: $Q_{crit} \& t_{int} \rightarrow parameter scan + \chi^2 minimization$

Model

- Realistic model of the detector
- Simulation of the energy deposit of alpha particles in the active detector medium (GEANT4)
- Conversion of energy deposit into ionization electrons $n_{ele} = E_{dep}/W_i$
- Drift of the electrons towards the GEM plane taking into account transverse and longitudinal diffusion and the electron drift velocity
 - Smearing with Gaussian distribution
 - Repeated for many different d_{source}
- Collection the charges according to their arrival position + multiplication

Model

PG et al. NIM A 870 (2017) 116

- Collection the charges according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100 % collection efficiency
- Multiplication of the charges inside the GEM holes
 - Count the electrons contained in single GEM holes
- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded → discharge (à la Raether limit)
- Count such large primary ionization clusters and normalize to the number of all $\alpha\mathchar`-$ particles
 - Discharge probability
- Not known: Q_{crit} & the time it takes to develop a discharge t_{int}
 - Parameter scan + χ^2 minimization

Model

PG et al. NIM A 870 (2017) 116

- Collection the charges according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100 % collection efficiency
- Multiplication of the charges inside the GEM holes
 - Count the electrons contained in single GEM holes
- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded → discharge (à la Raether limit)
- Count such large primary ionization clusters and normalize to the number of all $\alpha\mathchar$ particles
 - Discharge probability
- Not known: Q_{crit} & the time it takes to develop a discharge t_{int}
 - Parameter scan + χ² minimization

Discharge probability

Quencher content dependence

- Larger CO₂ content does not increase stability
- Again, range and gas properties
- Inversion at 39.5!

Gas	$v_{\rm drift}$ [cm μs^{-1}]	D_{L} [\sqrt{cm}]	$D_{\rm T}$ [$\sqrt{\rm cm}$]	W _i [eV]
Ar-CO ₂ (70-30)	0.932	0.0138	0.0145	30.2
Ar-CO ₂ (90-10)	3.25	0.0244	0.0268	28.8
Ne-CO ₂ (90-10)	2.66	0.0219	0.0223	38.1

Discharge probability

GEM vs. THGEM

- THGEMs less stable than GEMs
- For the same discharge probability: abs. gain factor 2-5 different
- Collection eff: 100%
- Primary electrons shared by lower no. holes in THGEMs
- ~Linear scaling with the (TH)GEM pitch

- Perform simulations to account for all orientations, emission angles, track lengths, etc.

Simulation fits

- Simulated discharge curves obtained for a given parameter pair (Q_{crit} , t_{int}) are fitted to the data by means of χ^2 minimization for each gas and d_{source}

Interpretation of *t*_{int} not straightforward

 Defines charge collection into the holes taking into account

primary charge density and transport properties

- It is d_{source}-dependent, cannot be interpreted as a discharge development time
- The order of magnitude resembles transition to streamer time
- Larger values for THGEMs may be related to the size?

			THGEM		GEM	
	Streamer development in a (TH)GEM hole	Gas	$\langle Q_{ m crit} angle$ [×10 ⁶ e]	t _{int} [ns]	$Q_{ m crit}$ [×10 ⁶ e]	t _{int} [ns]
		Ne-CO ₂ (90-10)	7.1 ± 2.2	30-210	7.3 ± 0.9	20–90
• T	Timescale of streamer development \sim 1 ns	Ar-CO ₂ (90-10)	4.3 ± 1.5	20-110	4.7 ± 0.6	15-50
		Ar-CO ₂ (70-30)	2.5 ± 0.9	40-310	-	_
•	$t_{int} >> 1$ ns points to ions building up space charge which leads to streamer formation					

Compatible with the results presented in recent studies by P. Roy (Saha Institute of Nuclear Physics) - Link

		THGEM		GEM	
Streamer development in a (TH)GEM hole	Gas	$\langle Q_{ m crit} angle \ [imes 10^6 e]$	t _{int} [ns]	$Q_{ m crit}$ [×10 ⁶ e]	t _{int} [ns]
	Ne-CO ₂ (90-10)	7.1 ± 2.2	30-210	7.3 ± 0.9	20-90
Timescale of streamer development \sim 1 ns	Ar-CO ₂ (90-10)	4.3 ± 1.5	20-110	4.7 ± 0.6	15-50
	Ar-CO ₂ (70-30)	2.5 ± 0.9	40-310	_	_
t _{int} >> 1 ns points to ions building up space charge which leads to streamer formation					

• Compatible with the results presented in S. Franchino et al., IEEE (2015) 1

© S. Franchino, IEEE (2015) 1, arXiv:1512.04968

٠

٠

Simulation fits

91

PG, L. Lautner et al. arXiv:2204.02853v1

- Simulated discharge curves obtained for a given parameter pair (Q_{crit} , t_{int}) are fitted to the data by means of χ^2 minimization for each gas and d_{source} Discharge Probability

Q_{crit} extracted individually for each distance and averaged using a weighted mean method

- Gas dependency observed again!
- Q_{crit} for both structures agree with each other, in spite of geometrical differences!
- Effective volume of streamer formation is similar in both cases?
- The primary charge limits shall be considered per single holes, not normalized to the hole volume.

92

- Q_{crit} for both structures agree with each other, in spite of geometrical differences!
- Townsend coefficient maps for a GEM and a THGEM geometry (Comsol[®] electric field simulation convoluted with Townsend coefficients)
- The "effective volume" of a streamer creation in a THGEM may be comparable to the size of a GEM hole
- Detailed simulations of streamer formation are necessary!
 Also to understand gas dependency of Q_{crit}

High-pressure operation

- Not much data available for MPGD
- If anything --> HP Xe, Ar, DP TPC, etc.
- MPGD in H_2 max at 1 Atm
- Intensive R&D necessary to fulfill requirements of the new 10bar H_2 TPC
- Approximate number density (*N* controlled by *P* adjustement) and reduced electric field (*E/N*) scaling:

		т 🛏
$\operatorname{magnitude}$	scaling $(n = N/N_0)$	1 20
electron, ion drift velocity v_d	$v_d(E/n)$	8100
electron, ion diffusion coefficients $D_{L,T}^*$	$\frac{1}{\sqrt{n}}D_{L,T}^*(E/n)$	78 (
attachment coefficient η	$n\cdot\eta(E/n)$ *a	
Light transparency \mathcal{T}	$\exp\left(-n\Pi_a L^*\right)$	
scintillation probability P_{scin}	$\frac{1}{1+n\tau k}$	
particle range R	R/n	0 2 C I I
Fano factor F_e, W_I, W_{ex}	$\sim {\rm constant}$	
charge multiplication coefficient α	$n \cdot \alpha(E/n) *^{b}$	
secondary scintillation coefficient \boldsymbol{Y}	$n \cdot Y(E/n) *^{b}$	

• High voltage in drift region (pressure dependence of v_d , D_L , η) – insulation (see e.g. B. Rebel at al. JINST 9 (2014) T08004)

MPGDs in high-pressure (MMG TPC)

- Double voltage for multiplication at ×10 pressure increase (no major insulation issues)
- Maximum achievable gain drops with pressure
- Energy resolution suffers at high *P* from the *E*/*P* reduction and the associated increase of the avalanche fluctuations

MPGDs in high-pressure (MMG TPC)

- Similar results in $Ar-iC_4H_{10}$ (98-2) obtained by TREX-DM collaboration
- F.J. Iguaz et al. Eur. Phys. J. C (2016) 76:529
- TREX-DM, 20×20 cm², 128 μm gap, bulk MMG
- Note electron transmission dependency on the P
 - Loss of electrons due to attachement and optical transparency
 - Influence of the ballistic deficit for lower v_d and D_L
- Also: activity of the natural chains and some common radioactive isotopes in components and materials intended used at the TREX

MPGDs in high-pressure (GEMs)

- Pioneering studies of GEM gain in noble gases at 1-15 atm (plots below)
 - A. Bondar et al. NIM A 481 (2002) 200
 - A. Bondar et al. NIM A 493 (2002) 8
- Maximum achievable gain drops abruptly in heavy noble gases
- Light gases (He, Ne) stable; also weaker gain dependency on P
 - − Associative ionization as the dominant avalanche mechanism in HP He and Ne; He + He^{*} \rightarrow He⁺₂ + e⁻

• See also "Gas gain and signal length measurements with a triple-GEM at different pressures of Ar-, Kr- and Xe-based gas mixtures", A. Orthen et al. NIM A 512 (2003) 476

3.0 bar

2000

100% Kr

2800

2400

open: 1-THGEM

solid: 2-THGEM

THGEM (t=0.4 mm, d=0.3 mm, a=1 mm, h=0.1 mm)

2.0 ba

1600

- THGEM in high-pressure Kr
- J.M. Maia et al., JINST 4 (2009) P10006
- Single and double THGEM
- Same max-gain dependency on P as with other MPGDs
 - Non-exponential dependency for G > 1000 due to photon feedback?
- Energy resolution improves with P in 2-THGEM system?
 - Deterioration of energy resolution for G > 1000

Active area (mm×mm)	14×13
Thickness t (mm)	0.4
Hole diameter $d(mm)$	0.3
Pitch <i>a</i> (mm)	1.0
Rim <i>h</i> (mm)	0.1
Hole density (mm ⁻²)	1.149
Metal area (%)	77.3
Optical transparency (%)	8.1

(a)

Effective Gain

10⁵

10

10

10

10

400

bai

800

1200

Gain limits in noble gases

DRD1 Gaseous Detector Technologies

from: A. Breskin (WIS), IWAD Kolkata, 28.10.2014 (link)

- E.g. LEM (THGEM) for ArDM & GLACIER 100kton LAr neutrino observatory
- A. Rubbia et al. JINST 8 (2013) P04012
- Detection of WIMP-induced ionization electrons in LAr for dark-matter search
- Problem: gain <100 in pure Ar, due to photon feedback!
 - easier situation in Xe, because of lower photon energy (smaller feedback)
 - More on max THGEM/GEM gain in Ar: A. Bondar et al. JINST 8 (2008) P02008
- Possible solutions:
 - Use cascaded THGEMs (to mask final-avalanche photons)
 - THGEM at low gain + Optical readout (SiPM, LAAPDs)
 - But now we enter the double-phase TPC region...
 - Unless...scintillation in H₂

Two-phase Ar detector with THGEM/gAPD optical readout in the NIR

- Bondar, Buzulutskov JINST 2010
- Buzulutskov 2012 JINST 7 C02025

Low-pressure H₂ (THGEM+MMG)

- AT-TPC Collaboration basic performance evaluation studies in lowpressure He and H₂
- M. Cortesi et al., EPJ Web of Conf. 174 (2018) 01007

Gain ~ 300

.

No MM

= 250 V

Reduced Bias (V/torr)

- 2-THGEM + MMG for stable operation, due to (direct citation):
 - the extended dimension of the THGEM holes, typically several times larger than the electron meanfree path even at low pressure;
 - the confinement of the avalanche within the holes, resulting in smaller photon-mediated secondary effects
 - the quenching effect of small amounts of impurities from natural outgassing of detector components e.g. N2 acts as wavelength shifter suppressing UV-photons emitted during the avalanche.
 - For low MMG voltage loss of electron collection efficiency and thus effective gain of the structure
 - High x-section for radiation less processes in H₂ (excitation of vibrational and rotational levels)
 - Higher electric fields necessary for a substantial gas avalanche multiplication (resulting in e.g. field emission)
 - Higher voltages → higher discharge probability → lower max. achievable gain. Need R&D in HP H₂

Low-pressure H₂ (WELL, THGEM and 2-THGEM)

- Single THGEM (WELL) at low P photon mediated secondary effects become relevant (lower maximum gain)
- Double THGEM structure (charge/gain sharing) improves stability
- Instabilities at high pressures due to high absolute voltage

GEMs in high-pressure

- Pioneering studies of GEM gain in noble gases at 1-15 atm (plots below)
 - A. Bondar et al. NIM A 481 (2002) 200
 - A. Bondar et al. NIM A 493 (2002) 8
- Maximum achievable gain drops abruptly in heavy noble gases
 increased HV, reduced stability
- Light gases (He, Ne) stable; also weaker gain dependency on P
 - − Associative ionization as the dominant avalanche mechanism in HP He and Ne; He + He^{*} \rightarrow He⁺₂ + e⁻

• See also "Gas gain and signal length measurements with a triple-GEM at different pressures of Ar-, Kr- and Xe-based gas mixtures", A. Orthen et al. NIM A 512 (2003) 476

R LAYERS

Resistive layers – charge spread

- Spatial resolution
 - Limited by the pad size ($\sigma \approx W/V12$)
 - Charge distribution narrow (influence of drift distance -> tr. diffusion)

5 0 12

0.04

600

550

500

450

400

350

300

250

200

30 40

Drift distance [cm]

Resolution [µm]

1) Decrease the pad/strip size

- Single electron efficiency
- Increase number of readout channels
- 2) Spread charge over several pads resistive anode
 - + Reduce number of channels
 - + Protect electronics (see prev. slides)
 - Limited track separation
- ATLAS NSW
 - J. Wotschack, Mod. Phys. Lett. A28 (2013) 1340020
 - T. Alexopoulos et al., NIM A 640 (2011) 110
- T2K TPC Upgrade
 - D. Attié et al. arXiv:1907.07060v2

© D. Attié et al. arXiv:1907.07060v2

C: the capacitance per unit area.

New structures: micro-RWELL

G. Bencivenni et al., JINST 14 (2019) P05014

- Single-sided Gaseous Electron Multiplier (GEM) coupled to the readout anode through the material of high bulk resistivity
- Single amplification stage → material budget, simplicity, industrialization, costs!
- High-rate capabilities restored by the proper grounding of the DLC layers → improved charge evacuation
- Thorough optimisation, including surface discharge considerations
 - \rightarrow concept of the distance-of-closest-approach crucial for stability!

- Rate capabilities of up to 10 MHz/cm² demonstrated
- Discharge probability of a single micro-RWELL stage compatible with a

triple GEM setup operated at stability-optimised HV settings

- Goal: characterise primary and secondary discharge stability of resistive DLC (TH)GEMs and micro-RWELL (GEM-based RWELL structure)
- Attractive option for future upgrades of, e.g. CBM MuCh system
- **DLC THGEM**: clear quenching mechanism observed, no discharges recorded at the gains where 100% probability is expected from standard THGEM studies
- Gain saturation not observed, though!

SECONDARY DISCHARGES

Secondary discharge formation*

Discharge in the transfer/induction gap appearing $\mathcal{O}(1-10)$ µs after the primary spark

- Leading theory: heating of the cathode after the primary discharge
 - A. Deisting, et al. NIM A 937 (2019) 168
 - A. Utrobicic, et al. NIM A 940 (2019) 262
- Transition between Townsend discharge and Streamer discharge?
 - Dependence on gas (α process) and cathode? (γ process feeding)
 - Time lag $\mathcal{O}(10~\mu\text{s})$ with a rapid full gap breakdown

a) Primary discharge

A. Utrobičić et al MPGD 2019, La Rochelle
Secondary discharges in GEMs^{*}

DRD1 Gaseous Detector Technologie

Discharge in a transfer/induction gap

- Full gap voltage breakdown can be associated with a spark development
- Appears $\mathcal{O}(\mu s)$ after the primary spark
- Develops at the gap fields below the amplification region
- Precursor current can be measured in between two discharges
 - → Secondary emission and streamer development in the gap?
- Leading theory: heating of the cathode after the primary discharge
 - A. Deisting C. Garabatos, PG, et al. NIM A 937 (2019) 168
 - A. Utrobicic, et al. NIM A 940 (2019) 262
- Mitigation strategies established
 - L. Lautner, PG, et al. JINST 14 (2019) P08024
 - A. Deisting, C. Garabatos, PG, et al. NIM A 937 (2019) 168

Secondary discharge formation

Discharge in the transfer/induction gap appearing $\mathcal{O}(1-10)$ µs after the primary spark

- Leading theory: heating of the cathode after the primary discharge
 - A. Deisting, et al. NIM A 937 (2019) 168
 - A. Utrobicic, et al. NIM A 940 (2019) 262
- Transition between Townsend discharge and Streamer discharge?
 - Townsend mechanism initiated by electrons from a primary discharge;
 - Secondary emission from the heated cathode;
 - Space charge accumulation at the anode;
 - Transition to a streamer.

STACKS

1) Relatively long time to evacuate ions from the amplification region

- Fast gain drop at high fluxes: (>10 kHz/cm²)
- Space charge accumulation, distortion of E field.
- Screening effect for next event
- **2)** Limited multi-track separation (~100 μm)
 - Minimum wire distance ~1mm (mechanical instabilities due to electrostatic repulsion)
- 3) **E×B effects** (Lorentz angle) around wires degrades *x*-*y* resolution

4) MWPC with Gating Grid

- Introduces dead time (e.g. 200 µs in ALICE)
- Continuous operation not possible
- Reduces maximum readout rates to $\mathcal{O}(1 \text{ kHz})$
- IBF = 10-20% without GG
- 5) Ageing note gas and material dependency, also in MPGDs
 - Formation of solid deposits
 - Gain drops and instabilities

Drift time in TPC. Gated grid open Gated wire grid must stay closed, no event readout

Build stacks!

- GEMs are easy to stack
 - Pre-amplification stage lower gain of single structures
 - Charge spread between independent holes Q_{crit} per hole stays the same!
 - Small pitches preferable (watch out quality!)
- GEM + MMG hybrids and multi-MMG stacks

NIM A 834 (2016) 149 and NIM A 976 (2020) 164282, NIM A 623 (2010) 94

- Clear influence of the pre-amplification stage on the stability of MMG
- Lower charge densities reach (subsequent) MMG stages
- Mesh cell as an independent amplification structure (see also JINST 18 (2023) C06011)
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability, → 4GEM Readout for ALICE TPC (IBF optimized)
 - Optimize the electric field above/below the MPGD (diffusion, focusing, extraction/collection)

ALICE TPC Upgrade TDR Addendum, CERN-LHCC-2015-002

GEM stacks

- GEMs are easy to stack
 - Build stacks, share charge between subsequent structures
 - Pre-amplification stage lower gain of single structures
 - Charge spread between several independent holes Q_{crit} per hole stays the same!
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability, e.g.:
 - 4GEM Readout for ALICE TPC (IBF optimized) CERN-LHCC-2013-020, CERN-LHCC-2015-002
 - 5GEM RICH for eIC (stable operation at very high gains) M. Blatnik et al., Trans. on Nucl. Sci. 62 (2015) 3256

Stability of a GEM stack operated in low-IBF mode can be restored by adding 4th GEM. 4GEM spark rates in Ne-CO₂-N₂ (90-10-5), G~2000: • ~10⁻¹⁰ 1/ α • 6.4×10⁻¹² 1/hadron

CERN-LHCC-2015-002

- Clear influence of the pre-amplification stage (GEM) on the stability of MMG
- Lower charge densities reach MMG (cf. 1 and 2 mm gaps)
- Confirmed with GEANT simulations
- 2GEM + MMG in low-IBF mode (e.g. E. Aiola et al. NIM A 834 (2016) 149)

• COMPASS hybrid THGEM + Micromegas (e.g. F. Tessarotto, RD51 Meeting, Munich 2018 link)

Nominal G \sim 30000 with:
THGEM1 gain × T1 ~20
THGEM2 gain × T2 ~15
MMG gain ~ 100

Moderate gains of single structures

Moderate spark rate in all segments, constant in time

Build stacks!

- GEMs are easy to stack
 - Build stacks, share charge between subsequent structures
 - Pre-amplification stage lower gain of single structures
 - Charge spread between several independent holes Q_{crit} per hole stays the same!
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability,
 - \rightarrow e.g. 4GEM Readout for ALICE TPC (IBF optimized)

4GEM spark rates in Ne-CO₂-N₂ (90-10-5), G~2000:

- ~10⁻¹⁰ 1/ α
- 6.4×10⁻¹² 1/hadron

• Influence of HV settings

- Different HV settings have been tested with a 3-GEM configuration
- "<u>Standard</u>" \rightarrow "<u>IBF</u>"
 - Standard optimized for stability (COMPASS)
 - − IBF \rightarrow optimized for IBF
- Significant drop of stability while using IBF settings with a typical 3-GEM configuration

• **4-GEM** configuration, optimized for energy resolution and IBF is also stable against electrical discharges $E_{\alpha} = C$

	S-S-S	S-S-S-S	S-LP-LP-S			
	'standard' HV G = 2000	IB = 2.0% G = 2000	IB = 0.34% G = 1600	IB = 0.34% G = 3000	IB = 0.34% G = 5000	IB = 0.63% G = 2000
$E_{\alpha}^{220} Rn$ $E_{\alpha} = 6.4 MeV$ $rate = 0.2 Hz$	~10 ⁻¹⁰)		$<\!2\! imes\!10^{-6}$	$< 7.6 \times 10^{-7}$	
241 Am E _{α} = 5.5 MeV rate = 11 kHz					($< 1.5 \times 10^{-10}$
239 Pu+ 241 Am+ 244 Cm E _{α} = 5.2+5.5+5.8 MeV rate = 600 Hz	V	$< 2.7 \times 10^{-9}$	$< 2.3 \times 10^{-9}$	$(3.1\pm0.8) imes10^{-8}$		$< 3.1 \times 10^{-9}$
90 Sr E _{β} < 2.3 MeV rate = 60 kHz					$< 3 \times 10^{-12}$	

Hybrid stacks (example)

GEM + MMG (e.g. B. Moreno et al, NIMA654(2011)135, S. Procureur et al. JINST 7 (2012) C06009)

- Clear influence of the pre-amplification stage (GEM) on the stability of MMG
- Lower charge densities reach MMG (cf. 1 and 2 mm gaps)
- Confirmed with GEANT simulations
- GEM+MMG characterized by good ion backflow performance (e.g. E. Aiola et al. NIM A 834 (2016) 149)
- Considered for future CEPC TPC (China) or HYDRA TPC at R3B (GSI)
 H. Qi, Joint Workshop of CEPC, April, 15, 2021
- Room for optimization → Micromegas mesh geometry (small cells for low charge densities in single cells)

Electric field above GEM

- Clear influence of a field **above** the GEM on its stability
- Correlation with drift parameters: diffusion
 → charge density → discharge probability
- Increase for *E* < 400 V/cm not related to gain
- Drop for *E* > 400 V/cm not related to the collection efficiency

