Impact on luminosity of Turn-around time, Run time etc.
Definitions (reminder…)

$$\tau_{\text{eff}} = \frac{N}{L_0 \sigma n_{\text{IP}}}$$

Case of no Levelling

Luminosity evolution

$$L(t) = \frac{\hat{L}}{(1 + t / \tau_{\text{eff}})^2}$$

Average luminosity

$$L_{\text{ave}} = \frac{\hat{L}}{(\tau_{\text{eff}}^{1/2} + T_{\text{ta}}^{1/2})^2}$$

Optimum T_{run}

$$T_{\text{run}} = \sqrt{\tau_{\text{eff}} T_{\text{ta}}}$$

Cf. F. Zimmermann – Chamonix 2011
Observations:
- T_{ta} is the main factor for a high average luminosity
- Case 1: if T_{ta} has to be in the range 4-5 h, T_{run} has small impact
 \Rightarrow a low T_{run} can be used
 \Rightarrow small dynamic range in L: need for levelling?
- Case 2: if T_{ta} can be made small (2-3 h), T_{run} shall preferably be small
 \Rightarrow small dynamic range in L: need for levelling?
Conclusions

• Working on the reduction of T_{ta} will be highly rewarding (2-3 h ?)

• T_{run} does not need to be very long (4-5 h is fine)

• The dynamic range in luminosity will not exceed a factor of 3: does it justify levelling?

• A small T_{run} (4 h) is compatible with a moderate intensity (4×10^{14} p)...