Brainstorming Session on Beam Parameters for the High Luminosity LHC

Low γ_t vs. nominal optics in the SPS

Potential limitations and possible alternatives

Gianluigi Arduini, Hannes Bartosik, Yannis Papaphilippou and Benoit Salvant BE/ABP

Geneva, 24/06/2011

Optics

- Horizontal aperture reduced in Q20 (larger dispersion) but no problem for LHC beams
- No clear measured difference for different injection optics (extraction to be confirmed)
- Same resonance diagram for systematic resonances but different phase advance may induce/cancel different resonances
 - Indication of stronger integer resonance for Q26 from both simulations and measurements
 - Repeat measurements with non-linear chromaticity for building non-linear model in both optics
- Cycling of magnets in different optics for fixed target beams can be handled with careful cycle re-programing

Optics	Q20 (low γt)	Q26 (nominal)
Working point	(20.13, 20.18)	(26.13, 26.18)
Max. Dispersion	8 m	4.5 m
Max. β-functions	105 m	105 m
Min. β-functions	30 m	20 m
γt	18	22.8
η @ 26 GeV/c	1.8E-3	0.63E-3
η @ 450 GeV/c	3.1E-3	1.9E-3
Phase advance/cell	3*2π/16	4*2π/16

Instabilities

Instability thresholds are scaled with slippage factor (or synchrotron tune), thus clear benefit for running at low transition energy

- □ TMCI threshold ("zero" chromaticity) 1.6e11p for nominal vs >3.5e11p for Q20 for ξ_y <0.05 (observed 4h ago with Rfvoltage=3.7MV)
- Electron cloud instability
 - Preliminary simulations for injection energy suggest higher threshold for Q20
- $\label{eq:loss} \begin{array}{c} \hline \Box \ \mbox{Longitudinal instabilities} & N_{th} \propto \eta \epsilon_l^2 \tau \\ \hline \Box \ \mbox{Loss of Landau damping} & N_{th} \propto \eta \epsilon_l^2 / \tau \end{array} \begin{array}{c} \hline \Box \ \mbox{Coupled bunch} \end{array}$

 - Coupled bunch

 N_{th} ... Instability threshold ϵ_l ... longitudinal emittance au ... bunch length ... slippage factor $\boldsymbol{\eta}$

Emittance vs. intensity vs. losses

- Injection ("short" flat bottom)
 - For Q20, emittance blow-up (>1.5e11 p/b) with peak values of 25% at 3e11 p/b
 - For Q26, slightly larger blow up and increased losses (all along flat bottom)
 - Larger chromaticity (much larger sextupole strengths + integer stop-band)
 - ξ_y of at least 0.4 needed in Q26 for stabilizing beam up to 2.8e11 (avoid losses within 10ms at injection)

Working point optimization for both optics

- Extraction (long flat bottom + slow ramp)
 - For Q20, emittance of 2.4µm for 3e11 p/b with <10% losses</p>
 - Mostly injection and capture
 - 20% of bunch length increase
 - □ For Q26?

γt=22.8

Longitudinal emittance

Time (s)

RF-voltage scaled with slippage factor

RF-voltage programs for the 200 MHz cavities and a constant filling factor in momentum (0.9) for different emittances

E. Shaposhnikova

- Longitudinal emittance blowup (injection and middle of the ramp) needed for beam stability
- Maximum RF-voltage (7.5 MV) used now for extraction to LHC (bunch shortening)
- SPS RF upgrade

- Emittance blow-up may not be needed
- For same stability, maximum available voltage @ extraction and given bunch length, longitudinal emittance smaller compared to nominal optics
 - Beam stability issues due to small longitudinal emittance in LHC
 - 200MHz system in the LHC?
 - □ 400MHz system in the SPS (space, impedance?)

To be checked in MDs

Alternative optics

Working point with intermediate integer tune e.g. 22

- Transition energy of 20, i.e. slippage factor increase of 1.9 @ injection and 1.3 @ extraction
- Non-zero dispersion in straight sections (max of 2m)
 - □ Problem with injection/extraction?

 \mathcal{B}_{k} (m), \mathcal{B}_{k} (m)

Resonances?

Manipulate transition at extraction

- Quadrupole magnet strengths?
- Additional power convertors
- Optics distortion?

