A few considerations

\rightarrow Peak Lumi limitation \rightarrow IT aperture

→PAC-MAN

 \rightarrow Bunch length

S. Fartoukh, HL-LHC-LIU meeting 24/06/2011

Peak luminosity limitations (based on the parameters "HL-LHC kickoff+")

→ Peak lumi larger than 5E34 (from OB's talk)

Parameter	nominal	25ns	50ns
Ν	1.15E+11	2.0E+11	3.3E+11
n _b	2808	2808	1404
beam current [A]	0.58	1.02	0.84
beam separation $[\sigma]$	10	10	10
β* [m]	0.55	0.15	0.15
ε _n [μ m]	3.75	2.5	3.0
ε _L [eVs]	2.51	2.5	2.5
Piwinski parameter	0.68	2.5	2.5
geom. reduction	0.83	0.37	0.37
beam-beam / IP	3.10E-03	3.9E-03	5.0E-03
Peak Luminosity	1 10 ³⁴	7.4 10 ³⁴	8.4 10 ³⁴

→ What to do at the beginning of the coast?

Anti-crabing (!), parallel sep. (LR!!) or more X-angle (demand on the IT/D1/Q4/D2 aperture, especially for 50 ns with bigger peak lumi and bigger emittance!!!)

Assuming 2 IR's and 21 LR's per IP side (Phase I, could be up to 24 for the HL-LHC)

- \rightarrow Crossing angle seems to be the best (only?) way: 15.5/17.7 sigma needed for 25/50 ns.
- → Even larger Piwinsky angle up to 4.5 for 50 ns!
- → For 50 ns (also with larger emittance) the IT aperture will be substantially larger

Pacman bunches

 \rightarrow Sooner or later there will be more PAC MAN than nominal **bunches** because the IT is longer, e.g. for 25 ns:

- Nominal LHC: 30 pacman per batch with 15 LR's per IP side.
- **Phase I** : 42 pacman per batch with 21 LR's per IP side.
- HL-LHC : up to 48 pacman against 24 nominal
- → Eliminating the nominal bunches with 25 ns micro-batches of 24 bunches will also
- 1) Eliminate the Pacman effect itself,
- 2) Halve the number of LR's (as for 50 ns)
- 3) With more bunches than for 50 ns (\sim 1800)
- → Possible SPS filling scheme micro-batches (courtesy of G. Rumolo)

→ Can the bunch charge be the same as the one offered for 50 ns (2.5E11) with e.g. 2.5 mum emittance?

The "taboo" of the bunch length

What's about halving the bunch length?

 \rightarrow 5 cm compatible with 16 MV and 1eVs injected emittance, but Landau cavity needed!

→ 4 cm would require "only" doubling the existing RF, which looks reasonable compared to 40MV crab-cavity per beam!

→ A new parameter world can be opened for such a bunch length, which is also much less demanding in Piwinsky angle and beta* aspect ratio (flat optics) without crab.