

Estimated beam characteristics from the upgraded injectors

R. Garoby for the LIU Project Team

Brainstorming - 24/0<u>6/2011</u>

Planned actions

- Status of investigations
- Estimated beam characteristics
- Planning
- Summary

To increase performance

Brightness ↗

- ⇒ Increase injection energy in the PSB from 50 to 160 MeV, Linac4 (160 MeV H^-) to replace Linac2 (50 MeV H^+)
- ⇒ Increase injection energy in the PS from 1.4 to 2 GeV, increasing the field in the PSB magnets, replacing power supply and changing transfer equipment
- ⇒ Upgrade the PSB , PS and SPS to make them capable to accelerate and manipulate a higher brightness beam (feedbacks, cures against electron clouds, hardware modifications to reduce impedance...)
- To increase reliability and lifetime (until ~2030!) (tightly linked with consolidation)
- ⇒ Upgrade/replace ageing equipment (power supplies, magnets, RF...)
- \Rightarrow **Procure spares**
- ⇒ Improve radioprotection measures (shielding, ventilation...)

Planned actions

Status of investigations

- Estimated beam characteristics
- Planning
- Summary

Present focus: debugging of transverse emittance measurement – Emittance evolution from PSB to SPS

Puzzle: SPS performance in 2011 wrt 2010?

H. Bartosik

- No dedicated measurements of emittance as function of intensity in 2010
- In 2010, emittance blow-up in PS was necessary in order to reduce blow-up in the SPS nominal optics
- In low γ_t optics, no blow-up in PS was necessary

Dedicated measurements in 2011

- 2010 results for low γ_t optics confirmed (or outreached)
- No additional blow-up in PS needed for nominal optics in general beam is more stable
- First measurement of emittance for high intensity in nominal optics shows promising results

What is different in 2011? Why is beam is so much more stable?

- Planned actions
- Status of investigations
- Estimated beam characteristics
- Planning
- Summary

- Beam parameters are given at injection in LHC: beam loss and blow-up inside the LHC are not accounted for.
- All necessary improvements are implemented in the injectors (Linac4, PSB to PS transfer at 2 GeV, coupled bunch instabilities suppressed, ecloud suppressed, hardware upgraded...)
- Estimated beam degradation in the accelerator chain (based on observations in 2010):
 - PS: 5 % beam loss, 5 % transverse blow-up
 - ✓ SPS: 10 % beam loss, 5 % transverse blow-up.
- RF gymnastics being kept, imperfections are unchanged:
 - +-10 % fluctuation of all bunch parameters within a given PS bunch train.
 - Traces of ghost/satellite bunches.

Beam parameters: Comments

Beam parameters at LHC injection [50 ns]

Beam parameters at LHC injection [50 ns]

Beam parameters at LHC injection [25 ns]

Beam parameters at LHC injection [25 ns]

- Planned actions
- Status of investigations
- Estimated beam characteristics

Planning

• Summary

	Linac4	PS injector, PS and SPS	Beam characteristics at LHC injection
2011 - 2012	Continuation of construction	 Beam studies § simulations Investigation of RCS option Hardware prototyping Design § construction of some equipment TDR 	25 ns, 1.2 10^{11} p/b, ~2.5 mm.mrad 50 ns, 1.7 10^{11} p/b, ~2.2 mm.mrad 75 ns, 1.2 10^{11} p/b, \leq 2 mm.mrad
2013 – 2014 (Long Shutdown 1)	 Linac4 beam commissioning Connection to PSB ? 	 PSB modification (H⁻ injection) ? PSB beam commissioning ? Modifications and installation of prototypes in PS and SPS 	
2015 - 2017	• Progressive increase of Linac4 beam current	 If Linac4 connected: progressive increase of PSB brightness Some improvement of PS beam (Injection still at 1.4 GeV) Equipment design § construction for PS injector, PS and SPS Beam studies 	• Limited gain at LHC injection (pending PSB (or RCS), PS and SPS hardware upgrades)
2018 (Long Shutdown 2)		 Extensive installations in PS injector, PS and SPS Beam commissioning 	
2019 –2021			After ~1 year of operation: beam characteristics for HL-LHC

- Planned actions
- Status of investigations
- Estimated beam characteristics
- Planning
- Summary

- MDs during 2011-2012 are essential to refine the knowledge and understanding of the injectors and to check the potential of upgrades.
- Preliminary requirement/First goal: getting confidence in beam instrumentation => Extensive debugging: progressing well, but time – consuming...
- Recent observations in 2011 tend to demonstrate that the accelerators perform better than in the previous years. <u>Not fully understood</u>.
- Need to interact with HL-LHC for selecting reachable beam parameters. <u>Main purpose of the present meeting!</u>
- Irrelevant to the decision to connect Linac4 to the PSB during LS1 and to the choice between PSB/RCS, the beam characteristics specified for LIU will be met some time after the end of LS2 (~2020).

THANK YOU FOR YOUR ATTENTION!

Reference

Why is today's beam better than nominal?

Simple! No more blow-up along the accelerators cascade...

- PSB:
 - Improved (achromatic) optics in the Linac2 to PSB transfer line since 2005 [http://khanke.home.cern.ch/khanke/papers/2006/ab_note_2006_001.pdf]
- PS:
 - Injection trajectories
 - Working point along the whole cycle
 - Transition
- PS to SPS:
 - Transverse matching with better optics in TT2-TT10

WARNING: NO MARGIN LEFT!

Spare slides

Planned actions

- Status of investigations
- Estimated beam characteristics
- Planning
- Summary

Linac4: Commissioning schedule

M. Vretenar

In 2013/14 (15 months), 6.5 months of beam commissioning, 3 months of HW tests, 5.5 months of installation

PS injector - option 1: PSB Upgrade

K. Hanke

							LS	1			LS	2	
		BC	Group	WBS	2011	2012	2013	2014	2015	2016	2017	2018	Total kCHF
PSB	Management (M resources)	67020	BE-OP	LIU-PSB 1	40	80	80	80	80	80	80	40	560
	Beam Dynamics	61020	BE-ABP	LIU-PSB 2		10	10	10	10	10	0		50
	Magnets	00291		LIU-PSB 3		165	65	65	660	1080	90		2125
	Magnetic Measurements	55201	TE-IVISC	LIU-PSB 3	20	40	60	60	60	60	60		360
	RF	69020	BE-RF	LIU-PSB 4									0
	Beam Intercepting Devices		EN-STI	LIU-PSB 7	25	45	50	50	25	25	25		245
	Power Converters (PSB)	99237	TE-EPC	LIU-PSB 5.2		745	450	5590	6370	1660	1190		16005
	Power Converters (Injection)	Existing*	TE-EPC	LIU-PSB 5.1	330	1045	105			45	45		1570
	Vacuum System	99271	TE-VSC	LIU-PSB 8		390	290						680
	Beam Instrumentation	64020	BE-BI	LIU-PSB 6	20	368	710	157					1255
	Commissioning		BE-OP	LIU-PSB 21							75	75	150
	Injection	Existing*	TE-ABT	LIU-PSB 9	1000	1000	1500	2125	1500	1000	155		8280
	Extraction, Transfer	99236	TE-ABT	LIU-PSB 10			360	1000	750	450			2560
	Controls	66020	BE-CO	LIU-PSB 11							500		500
	Electrical Systems		EN-EL	LIU-PSB 12		1100	500				100		1700
	Cooling & Ventilation		EN-CV	LIU-PSB 13						100	900		1000
	RP and Safety		DGS-RP	LIU-PSB 16									0
	Transport and Handling		EN-HE	LIU-PSB 14			25	25		30	200		280
	Survey	61021	BE-ABP	LIU-PSB 20	5		25	5	5		10		50
	PSB Total				1440	4988	4230	9167	9460	4540	3430	115	37370

+ Consolidation (Dipoles Power Supply, RF, Cooling § Ventilation) >20 MCHF

Tentative RCS parameters

=> Same beam characteristics than PSB @ 2GeV
=> Shorter PS § SPS injection flat bottoms

Energy range	160 MeV to 2 GeV
Circumference	$(200x 4/21) \pi m \approx 119.68$ K. Hanke
Repetition rate	~10 Hz
RF voltage	60 km ofits.
Harmonics	Bener ade (? Stuss
Frequency range	and upgrass
Beam param	olidation and sign) otion ycle (3.25 1012 p/p)
cost wrt pSB cc	modern des operation and modern des operations of the second seco
•Competitive con hardwale	21 cells, 5 cells/arc, 2 cells/straight section
• Rellas	3.5 < Q _{H,V} < 4.5
L Consist Section (4x)	2 x 2.35 m
Releastic gamma at transition	~4
Maximum magnetic field	< 1.3 T

							LS1	L			LS	2	
		BC	Group	WBS	2011	2012	2013	2014	2015	2016	2017	2018	Total kCHF
PS	Management (M resources)	61030	BE-ABP	LIU-PS 1	40	80	80	80	80	80	80	40	560
	Beam Dynamics	61031	BE-ABP	LIU-PS 2		10	10	10	10	10	10	10	70
	Magnets	99282	TE-MSC	LIU-PS 3			670	330					1000
	RF	69030	BE-RF	LIU-PS 4	110	305	1230	1330	3500	3500	3200		13175
	EPC	99263	TE-EPC	LIU-PS 5	70	140	1110	580	70	210	180		2360
	Beam instrumentation	64030	BE-BI	LIU-PS 6									0
	Intercepting device		EN-STI	LIU-PS 7		100							100
	Vacuum system	99272	TE-VSC	LIU-PS 8	25	125					3850		4000
	Injection	99253	TE-ABT	LIU-PS 9		135	300	820	780	560	90		2685
	Controls		BE-CO	LIU-PS 11			25						25
	Electrical system		EN-EL	LIU-PS 12									0
	Cooling and ventilation		EN-CV	LIU-PS 13									0
	Transport		EN-HE	LIU-PS 14							880		880
	Civil engineering	76800	GS-SE	LIU-PS 15	30		700						730
	RP	57393	DGS-RP	LIU-PS 16		225	225						450
	Machine Interlocks		TE-MPE	LIU-PS 17									0
	Alarms			LIU-PS 18									0
	Access doors			LIU-PS 19									0
	Survey		BE-ABP	LIU-PS 20							90		90
	OP	67030	BE-OP	LIU-PS 21	140								140
	PS Total				415	1120	4350	3150	4440	4360	8380	50	26265

+ Consolidation (Cooling § Ventilation, cables replacement...) ~43 MCHF

							LS	51			LS	52	
		BC	Group	WBS	2011	2012	2013	2014	2015	2016	2017	2018	Total kCHF
SPS	Management (M resources)	99241	TE-ABT	LIU-SPS 1	40	80	80	80	80	80	80	40	560
	Beam dynamics studies and	69042	BE-RF	LIU-SPS 2	10	10	10	10	10	10	10	10	80
	MKDV/H impedance reduction	99242	TE-ABT	LIU-SPS 9.2		50	100						150
	Beam instrumentation	64040	BE-BI	LIU-SPS 6	200	600	500	500	300				2100
	Extraction protection upgrade	99243	TE-ABT	LIU-SPS 9.1		100	200	350	300	150			1100
	New high bandwidth damper				150	150	600	600	300				1800
	Existing damper power upgrade	69040	BE-RF	LIU-SPS 4.3		100	450	300	150				1000
	Existing damper removal to					200	300						500
	RF 200 MHz upgrade	69041	BE-RF	LIU-SPS 4.2	850	1400	2400	9850	7450	3650	600	300	26500
	ecloud mitigation: aC coating	99273	TE-VSC	LIU-SPS 8.2	145	350	550	505	620	1050	1800	600	5620
	New collimation system	99244	TE-ABT	LIU-SPS 7		100	200	800	2700	2700	1500	1200	9200
	New MKE and extraction												
	channel upgrade	99245	TE-ABT	LIU-SPS 9.4		200	300	600	1800	1700	1200	600	6400
	Beam dump upgrade	99246	TE-ABT	LIU-SPS 9.5		150	250	800	2500	2100	1300	1000	8100
	TL protection upgrade	99247	TE-ABT	LIU-SPS 9.3		100	200	1500	1500	1500	1000	200	6000
	SPS Total				1395	3590	6140	15895	17710	12940	7490	3950	69110

+ Consolidation ~? MCHF

Planned actions

Status of investigations

- Estimated beam characteristics
- Planning
- Summary

PS injector: RCS feasibility study

Beam characteristics:

- for all PS users: equivalent to PSB at 2 GeV
- for ISOLDE: ~ 7 10¹³ p/s @ 2 GeV (today: ~ 10¹³ p/s @ 1.4 GeV)

Feasibility report with cost estimate: end of July

Principle of Working Point Scans

E. Benedetto

GOAL: Identify dangerous resonance lines in tune diagram Loss measurement for different WPs:

- Low intensity beam (not SC-dominated) \rightarrow 130 x 10¹⁰ protons
- Large emittance (to fill the chamber & provoke immediate losses)
- Long flat bottom @ 1.4 GeV
- Tune program:
 - Scan between (0.1 0.4)
 - Vertical tune constant
 - Sweep of the horizontal tune

Slope in the intensity signal indicates importance of the crossed resonance line

2 GeV

E. Benedetto

 \Rightarrow w/o PFW : no surprises

 \Rightarrow with PFW ongoing

PS Longitudinal: Batch Compression (1/2)

Batch Compression Schemes in the PS Compression to $h_{PS} = 10$ and generation of 64 bunches

^{*)} With h_{ps} =8 at injection, compared to present situation with Linac2 and double batch PSB to PS transfer

Chamonix 2011 Workshop Session 9 on LIU

(hypothesis 2.5 GeV)

C. Carli et al.

(Injection and first acceleration with h_{ps} =8 or h_{ps} =9)

PS Longitudinal: Batch Compression (2/2)

Simulation (C. Carli)

MD result at 2 GeV (H. Damerau, S. Hancock)

- RF gymnastics OK up to intermediate energy
- Significant effort required to reach 26 GeV and make beam available for the SPS (RF preparation § beam adjustment) => Need for precise measurement of transverse emittances before continuing

SPS Transverse: Tune Scans

H. Bartosik

- Identified resonances in the low γ_t optics
 - normal sextupole resonance Qx+2Qy is the strongest
 - skew sextupole resonance 2Qx+Qy quite strong !!??
 - normal sextupole Qx-2Qy, skew sextupole resonance at 3Qy and 2Qx+2Qy fourth order resonances visible

Identified resonances in the nominal optics

- normal sextupole resonance Qx+2Qy is the strongest
- Coupling resonance (diagonal, either Qx-Qy or some higher order of this), Qx-2Qy normal sextupole
- skew sextupole resonance 2Qx+Qy weak compared to Q20 case
- It seems that the stop-band width of the vertical integer is stronger than in Q20 optics

SPS Transverse: Single Bunch Emittances

H. Bartosik

Measurement of single bunch emittances

- In scan with "reference" wire scanner BWS.519 at flat top
- Long cycle (~10s injection plateau, ~10s acceleration)
- Losses along the cycle extracted from DC-BCT measurement

PS bunch length increasing with intensity

- T=2.9ns @ 1.5e11 p/b, T=3.5ns @ 3e11 p/b
- Emittances in PSB: ~ 1µm < 1.5e11p / ~ 1.1µm @ 2e11p / ~ 1.3µm @ 3e11p (Well adjusted beam in the PSB!)

SPS: 50ns bunch train – Double PSB batch

36

SPS: e-cloud with 25 ns bunch train

- Electron cloud measured at all the liners
 - Signal already visible with 1 batch on both stainless steel liners
 - No signal visible on the a-C coating liner
 - Half signal clearly visible on the half coated chamber
 - Effect of the clearing electrode checked scanning points on a grid of voltage vs. magnetic field values

Present focus: debugging of transverse emittance measurement – Error source inventory

Emittance blow-up in SPS with low γ_t

H. Bartosik

- MD4 beam in PSB with 1.1 turns injected (slightly smaller transverse emittances)
- Simultaneous measurements of vertical emittance in PS and SPS
 - At extraction (just before bunch rotation) in PS using PS-65.V
 - At end of flat bottom using SPS-BWS.519
 - Here RF-voltage of 5.75 MV in SPS
- If calibration of wire scanners between machine is believed → emittance blow-up for intensities above 1.5e11 p/b with peak values of 25% at 3e11 p/b

- Planned actions
- Status of investigations
- Estimated beam characteristics

Planning

• Summary

Linac4 connection to the PSB

- High interest of connecting Linac4 to the PSB during LS1:
 - Staged upgrade spread between LS1 and LS2 (shorter LS2 ?)
 - Timely termination of the Linac4 project
- Reasonable scenario (with 20 months LHC shutdown) if LHC stops in May 2013
 - ⇒ Possibility to run the injectors until the end of 2013
 - ⇒ No beam for physics before early 2015

TE	NT	ΑΤΙ	VE	SCI	HEC	DUL	.E -	СС	NN	IEC		N LI	NA	C4	DU	RIN	١G	LO	NG	S SH	U)T-C	00	WN	20	13/2014 - version B 06.04.11	
					2(013	8										2	01	4							COMMENTS M. VI	retenar
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	5 7	7 8	8 9) [10	11	12			
				Lin	ac4	co	nm	issi	onir	ng																L4 commissioning original schedule	
															Re	liab	oilit	y ru	n							Reliability run 5 months	
																		Tr	<mark>a</mark> ns	sfer	lin	ne c	om	miss	sion	ning	
																	PS	<mark>B n</mark>	າວດ	<mark>dif</mark> ica	ati	ions	5				
																				PS	SB	соі	nm	<mark>i</mark> ssic	nin	ng	
																								PS/	<mark>/</mark> SPS	S commissioning	
LHC Shut-down (20 months beam-to-beam)																											

 Scenario based on LHC stop at end 2012 is more risky / not recommended: when physics resumes after 20 months interruption, users will expect similar performance § reliability than before the shutdown...

PSB Upgrades

ID	Task Name	ha		2010	1		2014		2012		201	3	1	2014		2015	1	201	16		2017
		Q3 0	24 Q1	Q2 G	, 3 Q4	Q1	Q2 Q3	Q4 Q1	1 92 93	3 Q4 G	1 Q2	Q3 Q4	I Q1	Q2 Q3	Q4 Q'	1 02 03	3 Q4	Q1 Q2	 	4 Q1	Q2 Q3
1	Injector Operation			1 1	LU	1			1	1 1			Ú.	1	TI I	1	11			7	
2	Proton Operation Periods		-					<u> </u>	1 1				-		-		<u> </u>		-	>	
З	Proton Operation 2010				b.																
4	Proton Operation 2011						<u>.</u>	D													
5	Proton Operation 2013					T						<u> </u>								1	
6	Proton Operation 2014										1 T			······································	D						
7	Proton Operation 2015												ſ				D, I			1	
8	Proton Operation 2016																		C		
9	Ion Operation Periods				-			-0											Ť		
10	lon Run 2010				l Ö							···· 7								1	
11	Ion Run 2011							0													
12	lon Run 2013											Č									
13	Ion Run 2014														Č.						
14	lon Run 2015																Ø.				
15	Shutdown Periods												ل				_		_		
16	Xmas Break 2010/11					5							T								
17	Shutdown 2012							- <u>-</u>			_ /										
18	Shutdown 2013/14												لک								
19	Xmas Break 2014/15	-			1								T		6					1	
20	Shutdown 2016	-													T		2		_		
21																					
22	WP 1 Beam Dynamics				V																
26		-			1															1	
27	WP 2 Magnets																-		-		
58																					
59	WP3 RF System				—																
71																					
72	WP 4 Beam Intercepting Devices				—																
79																					
80	WP 5 Power Converters				-													_	7		
116																					
117	WP 6 Vacuum System							—	-	-	-		-	-	_	-					
122																					
123	WP 7 Beam Instrumentation				—			-										_	2		
125																					
126	WP 8 Commissioning and Operation																				
128																					
129	WP 9 Extraction, Transfer, Injection				—			-					-				-		—	7	
175																					
176	WP 10 Controls																_	₹			
183																					
184	WP 11 Electrical Systems				—								-					-			
189																					
190	WP 12 Cooling & Ventilation													٦	F				-		
207																					
208	WP 13 Radio Protection, Safety				-											-					
215																					
216	WP 14 Transport and Handling								I												
221																					
222	WP 15 Survey															1			— <u> </u>		

R.G.

PS Upgrades

Injection, magnets,

power converters...

System	Elements
Injection elements	Injection septum Injection bumpers Eventual extra kicker
Low energy correctors	100 horizontal correctors 30 vertical correctors
Low energy skew quadrupoles	45 magnets
Low energy quadrupoles	40 magnets
Transverse damper	Power part of existing system
e-cloud attenuation system	Chamber coating or electrode Installation
Instrumentation	BWS, BCT, Orbit system, profile monitors.
Improved shielding on top of route Goward and on top of SMH16	Shielding elements

Priority Item When New coupled-bunch FB 2012 [1] Dedicated kicker cavity 2015-2020 2 10 MHz 1-turn delay FB 2011 [1] 2011-2015 (?) 1 Renovate FB amplifiers Slow phase loops around each cavity 2013-2014 1 2014-2018 (?) 2 New power amplifier (1 tube/gap) 20 MHz 2012 1-turn delay FB 1 2 Slow phase loops around each cavity 2012 **40 MHz** 2011 [1] Automatic tuning system 1 1-turn delay FB 2012 2 New feedback amplifier in grooves 2014 2 Slow phase loops around each cavity 2012 2013 Study more voltage per cavity 3 3 New power supplies 2014-80 MHz 1-turn delay FB 2012 1 Automatic tuning system - PLC, prot./ions switching 2011-2012 1 Slow phase loops around each cavity 2 2012 2 New feedback amplifier in grooves 2014 2 Fast ferrite tuner 2016 3 Study more voltage per cavity 2013 3 New power supplies 2014-??? 3 Extra 80 MHz cavity

RF

R.G.

Brainstorming - 24/06/2011

S. Gilardoni

SPS Upgrades (1/2)

B. Goddard

R.G.

SPS Upgrades (2/2)

B. Goddard

R.G.