Beam characteristics at collision

energy for the main/HL-LHC

scenarios: Fundamental motivation for the proposed beam parameters

O. Brüning BE-ABP

HL-LHC Performance Goals

Leveled peak luminosity: $L = 5 \ 10^{34} \ cm^{-2} \ sec^{-1}$

Virtual peak luminosity: $L \ge 10 \ 10^{34} \ cm^{-2} \ sec^{-1}$

Integrated luminosity:

200 fb⁻¹ to 300 fb⁻¹ per year (I assume 250 fb⁻¹ per year in the following)

Total integrated luminosity: ca. 3000 fb⁻¹

Upgrade Considerations: Beam Lifetime

F. Zimmermann, Chamonix 2011

For given luminosity τ_{eff} scales with total beam current

→ argument for HL-LHC scenarios with maximum beam current → $\tau_{eff} = 13.9$ hours for 5 10¹⁴ p/beam

Summary of LHC Intensity Limits (7 TeV)

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

Oliver Brüning BE-ABP

4

Upgrade Considerations: Beam Lifetime Run length assuming leveled luminosity: $L \propto \frac{N^2}{n}$ → virtual luminosity of k * 5 10³⁴ cm⁻² sec⁻¹ → $T_{level} = (1-1/\sqrt{k}) * \tau_{eff}$ Assuming: 1.8 10¹¹ ppb @ 25ns & 3.5 10¹¹ ppb @ 50ns ($\rightarrow \approx 5 \ 10^{14} \text{ p/beam}$) \rightarrow $\tau_{eff} = 13.9$ hours for 5 10¹⁴ p/beam: → $T_{1evel} = 4.1 h$ # k = 2: → $T_{level} = 5.9 h$ # k = 3:# k = 4: → $T_{level} = 7.0 \text{ h}$

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

Oliver Brüning BE-ABP

Upgrade Considerations: Integrated Luminosity Integrated luminosity: run with luminosity decay [Stephar Fartoukh]

 \rightarrow L_{int} = ca 0.4 fb⁻¹ over 3 h for a luminosity decay to 2.5 10³⁴ cm⁻² s⁻¹

Upgrade Considerations: Integrated Luminosity Integrated luminosity: leveling to constant luminosity $L_{int} = L_{level} * T_{level}$

$$L_{\text{int}} = \left(1 - \sqrt{L_{level} / L_{virt}}\right) \frac{N_{tot}}{n_{IP} \sigma}$$
(σ =100 mbarn)

 \rightarrow integrated luminosity directly proportional to total current

→ $L_{int} = 0.4 + 0.73$ fb⁻¹ per fill for $N_{tot} = 5 \ 10^{14}$ ppb and k = 2

→
$$L_{int} = 0.4 + 1.25$$
 fb⁻¹ per fill for $N_{tot} = 5 \ 10^{14}$ ppb and k = 4

Upgrade Considerations: Integrated Lum

Phase	Days	C- Der year
Commissioning	21	n fb ⁺ k
Scrubbing run	10	ch 250
5 MDs	22	react
6 Technical stops	er	year to Jvery with beam)
Special requests	nd 220 fills P	 I EM/ALPHA Intermediate energy run Luminosity scans
Intensity ramp	U all	n hana fan aa 150 dawa (waan
Total high	~130	for HL-LHC operation
lon - petr	4	
requires	24	implies 1 to 1.5 fills per day
	290	for previous scenario
		M. Lamont March 2011

Upgrade Considerations: Integrated Luminosity

Machine Efficiency:

- \rightarrow average Turnaround time of ca. 5 hours
- \rightarrow minimum fill-to-fill time = 3h + leveling time + turnaround time
- → Efficiency = number of fills per day * fill-to-fill time / 24 h

 \rightarrow allows comparison with LHC operation: Efficiency = L_{oper} / L_{theor}

- Example 1: $k = 4 \rightarrow 1$ fill per day with run length of 10h:
 - → fill-to-fill time = 3h + 7h + 5h = 15h 5 10^{14} p/beam
 - Efficiency = 1 * 15 / 24 = 63%

Example 2: $k = 2 \rightarrow 1.5$ fills per day with run length of 7h:

→ fill-to-fill time = 3h + 4h + 5h = 12h 5 10^{14} p/beam

 \rightarrow Efficiency = 1.5 * 12 / 24 = 75%

Upgrade Considerations: Integrated Luminosity

HL-LHC running scenarios:

→ Assume average run length is reduced to premature end of fills

 \rightarrow assume on average 25% shorter than ideal fill length

 \rightarrow average fill time of 5h to 7.5h

5 10¹⁴ p/beam

→ 1.33 * 1 fills per day for k = 4Efficiency = 1.33 * 1 * (0.75* [3h+7h]+5h) / 24 = 70% (63%)

Upgrade Considerations: Machine Efficiency

- LHC Operation: theoretical maximum integrated luminosity
- → average Turnaround time of ca. 5 hours @ 3.5 TeV (2.5 h minimum)
- → Peak luminosity: $1.1 \ 10^{33} \text{ cm}^{-2} \text{ sec}^{-1}$
- → Luminosity lifetime: ca. 20h (35h) exponential ([1+t/tau]⁻²) decay Can't be explained by burn off (ca. 30h from DR restgas and IBS)!
- \rightarrow optimum fill length of ca. 14h with rather broad peak
- → minimum fill-to-fill length: 2.5h + 14h = 16.5h
- \rightarrow integrated luminosity / fill: ca. 40 pb⁻¹ (40 pb⁻¹) (fill 1883) (44 pb⁻¹)
- → integrated luminosity / day: ca. 58 pb⁻¹ (58 pb⁻¹) (65 pb⁻¹)
- $\rightarrow \text{ integrated luminosity / week: 405 pb^{-1} (405 pb^{-1})}$ (450 pb^{-1})

→ obtained integrated luminosity per week over last month: ca. 163 pb⁻¹
 → LHC Efficiency: ca. 163 / 405 → 40%

Upgrade Considerations: Integrated Luminosity

HL-LHC running scenarios: $6 \ 10^{14} \text{ p/beam}$; 'k' = 5

 \rightarrow $\tau_{eff} = 16.7$ hours for 6 10¹⁴ p/beam:

- → fill length of 3 + 9.2 hours for k = 5
- \rightarrow average Turnaround time of ca. 5 hours

→ total fill time of 17.2 hours with $L_{int} = 1.7 + 0.4$ fb⁻¹ per fill

 \rightarrow 0.8 fills per day (only leveled run without decay)

 \rightarrow requires ca. 57% efficiency of the machine!

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

Oliver Brüning BE-ABP

<u>Upgrade Considerations: Minimum β^* values:</u>

Limitations for β^* at 7 TeV: Aperture & Chromatic aberrations

HL LHC Upgrade: New scheme (ATS) for optics

- β^* of 0.15m accessible for round beams @ 7 TeV

 \rightarrow implies β -functions of > 20km inside triplet magnets!

→ limit of Field Quality and aperture

- β^* of 0.3m / 0.075m accessible for flat beams @ 7 TeV

Aperture at 7 TeV::

- \rightarrow interaction with WP3 of the HL-LHC
- current aperture goals are consistent with $β^*$ of 0.15m and 10 σ separation

S. Fartoukh

Upgrade Considerations: Maximum Bunch Intensity:

Bunch Intensity:

1) Collective effects (e.g. single bunch TMCI) \rightarrow ca. 3.5 10¹¹ ppb

2) e-cloud effect \rightarrow depends on bunch spacing

→ 2.2 10¹¹ ppb at 25ns requires: $\delta_{sec} < 1.3$ and IR cryo upgrade

→ TMCI intensity limit for 50ns compatible with: $\delta_{sec} > 1.7$ and IR cryo upgrade

Upgrade Considerations: Maximum Brightness

Beam-Beam: limits maximum beam by brightness

- → $\Delta Q = 0.02 0.03$ seems feasible based on 2010 experience
- → maximum acceptable PA? → $\Theta > 2?$ (sync-betatron resonances)

→ Three experiments with head on collisions: → $\xi = 7.7 \ 10^{-3}$

→ assuming the same geometric reduction factor for ξ as for L (0.35 with alternating crossing) and assuming negligible contribution from long range:

→ $\varepsilon_n \ge 2 \ \mu m$ for N_{bunch} = 3.5 10¹¹ (50ns bunch spacing) → $\varepsilon_n \ge 1 \ \mu m$ for N_{bunch} = 2.2 10¹¹ (25ns bunch spacing)

HL-LHC Performance Estimates

nominal bunch length and minimum β^* : 'HL-LHC Kickoff+'

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

Oliver Brüning BE-ABP

¹⁸

Upgrade Considerations: Integrated Luminosity

- HL-LHC 25ns goal: 5.6 10^{14} p/beam k = 4
- → τ_{eff} = 15.6 h and leveling time: 7.8 h
- → Turnaround time: $7.8h + 3h + 5h = 15.8h \rightarrow 1.5$ fills /day
- → L_{int} / fill = 1.4 fb⁻¹ + 0.4 fb⁻¹
- \rightarrow 60% efficiency on 150 days \rightarrow 250 fb⁻¹

HL-LHC 50ns goal: 4.6 10^{14} p/beam k = 4.5

- $\rightarrow \tau_{eff} = 12.8$ h and leveling time: 6.8 h
- → Turnaround time: $6.8h + 3h + 5h = 14.8h \rightarrow 1.7$ fills /day
- → L_{int} / fill = 1.22 fb⁻¹ + 0.4 fb⁻¹
- \rightarrow 60% efficiency on 150 days \rightarrow 250 fb⁻¹

HL-LHC Performance Estimates

nominal bunch length and LIU estim ~ for injector complex:

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

Oliver Brüning BE-ABP

20

Upgrade Considerations: Integrated Luminosity

- LIU 25ns goal: 25ns; 4.8 10^{14} p/beam k = 2.8
- → τ_{eff} = 13.3 h and leveling time: 5.4 h
- → Turnaround time: 5.4h + 3h + 5h = 13.4h → 1.8 fills /day
- → L_{int} / fill = 1 fb⁻¹ + 0.4 fb⁻¹
- \rightarrow 60% efficiency on 150 days \rightarrow 225 fb⁻¹

LIU 50ns goal: $3.5 \ 10^{14} \text{ p/beam } \text{k} = 4$

- → τ_{eff} = 9.7 h and leveling time: 4.9 h
- → Turnaround time: 4.9h + 3h + 5h = 12.9h → 1.9 fills /day
- → L_{int} / fill = 0.9 fb⁻¹ + 0.4 fb⁻¹
- \rightarrow 60% efficiency on 150 days \rightarrow 115 fb⁻¹

Personal Summary:

- → CRAB cavities are a vital ingredient for HL-LHC. Without them we will fall short of 250 pb⁻¹ goal (k ≥ 4). CC are the best tool for compensating geometric reduction factor (LRBB wires perhaps partially) (flat beams [SF])
- → Given equal bunch parameters, 25ns case is clearly better than 50ns (assuming there is no electron cloud limit for 25ns!)
- ➔ If LHC is limited by total beam current, 50ns offers larger performance reach (higher virtual luminosity for equal lifetime)
- → Revised beam-beam limits (0.02 to 0.03) opens door for high brightness operation scenarios
- \rightarrow 50ns schemes benefit from double batch injection \rightarrow higher brightness
- → Rather then lowering the bar for project goals, I would stick to challenging (ideal) goals [while underlining that there is a risk associated to it (like CC & Nb₃Sn for HL)] and to pursue novel schemes (e.g. feedback systems etc.)

Questions for discussion:

- → What is the smallest emittance LIU can generate for 50ns with 3.3 10^{11} ppb?
- → What is the highest intensity LIU can offer for 50ns with $\varepsilon_n = 3 \ \mu m$?
- ➔ How confident are we that electron cloud effects will not limit 25ns operation?
- \rightarrow What is the emittance and intensity reach for 25ns operation?
- → Other (than e-cloud and TMCI) intensity limitations in the LHC (e.g. RF)?
- → Confidence that Nb3Sn magnet technology will be available for HL-LHC?
- → How confident are we that Crab cavities will be available for HL-LHC?

→ flat beam option as alternative operation scenario (SF) ($\beta > 40$ km)

→ How confident are we that we can reach a better efficiency for HL-LHC than for current operation (→ see my spare transparencies)?

Spare Transparencies

<u>Potential limitations: minimum β^* values:</u>

Challenges – Unknowns for operation with small β^* :

→ long range b-b & operation with LPA (synchro- β resonances)

→ all can be alleviated by increasing β^* → smaller PA

→ Field Quality in triplet magnets:

 \rightarrow all can be alleviated by increasing $\beta^* \rightarrow$ smaller peak β

keep β* of 0.2m and 0.5m as backup values for HL-LHC
 (but with reduced performance reach)

Potential limitations: high brightness operation:

Challenges – Unknowns for operation with small β^* : → IBS growth rates:

→ Need to be re-evaluated for ATS scheme

(which should help)

 \rightarrow Can be alleviated by larger bunch length \rightarrow larger PA

→ minimum Turnaround time:

→ assumed here for HL: 2 * Turnaround time @ 3.5 TeV

(ramp & squeeze time)

→ Can be longer for small β^* : larger than 2 ration (1.5 / 0.15) and ATS scheme, small current in matching section quads

Potential limitations: General worries

How confident are we that average fill times are longer than 7h?

→ RF trips
→ QPS and PC trips
→ beam abort due to R2E
→ UFO rate

→ Last 30 fills had less then 4 operator initiated EOFs (2-1-1)!!!!!!

How confident are we that we can overcome e-cloud for 25ns?

- HL-LHC goals require above ultimate intensities with sub-nominal ε_n
 requires SEY of less than 1.3!
 - → keep 50ns option alive!
 - \rightarrow apart from pile-up, 50ns has a high performance potential!

Potential limitations: high brightness operation:

No Leveling:

 \rightarrow ca. 0.6 fb⁻¹ in 7 hours for start luminosity of 5 10³⁴ cm⁻² s⁻¹:

 \rightarrow 12 hour minimum fill-to-fill time for 5 h turnaround time

- → need 2.8 fills per day
- \rightarrow 1.7 fb⁻¹ per day
- → 250 fb⁻¹ in 150 days
- → requires 100% efficiency to reach HL goals!

cooling & e- heat for 25 ns spacing

going above N_b =1.7x10¹¹ & ultimate luminosity requires dedicated IR cryo plants; limit then becomes N_b ~2.3x10¹¹

cooling & e- heat for 50 ns spacing

going above N_b =2.3x10¹¹ & ultimate luminosity requires dedicated IR cryo plants; limit then becomes N_b ~5.0x10¹¹

2N

HL-LHC Performance Estimates

nominal bunch length and minimum β^* : 6 10¹⁴ p/beam

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

Oliver Brüning BE-ABP

31

HL-LHC Performance Estimates

nominal bunch length and minimum β^* : **4** 10¹⁴ p/beam

		minimum β^*			
Parameter	nominal	25ns 5	Ons 🧏		
Ν	1.15E+11	1.4E+11	7.5.5.		
n _b	2808	2808	J4		
beam current [A]	0.58	0.71	~ % .71		
x-ing angle [µrad]	300	430	520	→ Not enough room f	or
beam separation $[\sigma]$	10	10	10	leveling (with Crab	Cavities)
β* [m]	0.55	0.1 💙	0.15		
ε _n [μ m]	3.75	1	3.0	VIRTUAL IUMINOSITY (25) $-45/0.271034$ am	ns) ot -2 a-1
ε _L [eVs]	2.51		2.5	$L = 4.57 \ 0.57 \ 10^{\circ}$ Cm	- 5 -
energy spread	1.00E-04	1.	1.00E-04	= 12 10 ³⁴ cm ⁻² s ⁻¹ ('k'	= 2.4)
bunch length [m]	7.50E-02		7.50E-02		
IBS horizontal [h]	80 -> 106	0 0 23	25	Virtual luminosity (50	ns) of
IBS longitudinal [h]	61 -> 60	č nº 18	21	$L = 6 / 0.3 / 10^{34} \text{ cm}^{-2}$	S-1
Piwinski parameter	0.68	2.5	2.5	= 16 10 ³⁴ cm ⁻² s ⁻¹ ('k'	= 3.2)
geom. reduction	0.83	0.37	0.37	,	
beam-beam / IP	3.10E-03	3.1E-03	4.2E-03		
Peak Luminosity	1 10 ³⁴	4.5 10 ³⁴	6.0 10 ³⁴	(Leveled to 5 10^{34} c	:m ⁻² s ⁻¹)
Events / crossing	19	86	228	95	190

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

Oliver Brüning BE-ABP

32

Performance optimization for the LHC

Luminosity (round beams):

$$L = \frac{n_{b} \cdot N_{b}^{2} \cdot f_{rev}}{4 \pi \cdot \beta^{*} \cdot \varepsilon_{n}} \cdot R(\phi, \beta^{*}, \varepsilon_{n}, \sigma_{s})$$

Event pileup & e-cloud
→1) maximize bunch brightness [N_b/ε_n] beam-beam limit and injector complex performance
→2) minimize beam size (constant beam power)
→3) maximize beam current (beam power limit)
→4) compensate for 'R'

- → reduction of long range beam-beam interactions
- \rightarrow reduction of head-on beam-beam parameter
- \rightarrow reduction of the mechanical aperture
- → synchro-betatron resonances
- → reduction of instantaneous luminosity
 - \rightarrow inefficient use of beam current
 - → option for L leveling!

HL-LHC Performance Goals

Operation at performance limit

choose parameters that allow higher than design performance
leveling mechanisms for controlling performance during run

Preferred leveling mechanism: Crab Cavities

Reservations: technology & MP & field quality

 Supplementary tools for leveling:
 # crossing angle and Long-range and beam-beam wire compensators
 # transverse offsets at IP
 # dynamic β* squeeze

LIU-HL-LHC Brainstorming meeting, CERN, 24 June 2011

35

Efficiency (up to end of fill 1868)

LHC Efficiency: Last 10 fills

G. Arduini @ LMC 96, 2011

Ultimate LHC parameters:

Ultimate LHC: 25ns; 4.8 10¹⁴ p/beam; $\varepsilon_n = 3.75 \mu m$

- → $\tau_{\text{lumi}} = 12$ h and ideal run length : 7 h
- → Turnaround time: $7h + 5h = 12h \rightarrow 2$ fills /day
- → L_{int} / fill = 0.42 fb⁻¹
- \rightarrow 60% efficiency on 150 days \rightarrow 80 fb⁻¹

LIU goal: 50ns; 3.5 10^{14} p/beam k = 4 with 50% efficiency

- → τ_{eff} = 9.7 h and leveling time: 4.9 h
- → Turnaround time: 4.9h + 3h + 5h = 12.9h → 1.9 fills /day
- → L_{int} / fill = 0.9 fb⁻¹ + 0.4 fb⁻¹
- \rightarrow 60% efficiency on 150 days \rightarrow 115 fb⁻¹