

Annual NORNDiP Conference 7th–8th May 2024

1ay 2024 Nordic Network for Diversity in Physics

Investigating nuclear shape transitions through lifetime measurements.

Johannes Sørby Heines (they/them)

University of Oslo

7th May 2024

nnrc.uio.no

J S Heines (UiO)

How are nuclei created?

nnrc.uio.no

J S Heines (UiO)

How are nuclei created?

Heavy nuclei:

- too big for first principles
- not quite statistical

nnrc.uio.no

How are nuclei created?

Heavy nuclei:

- too big for first principles
- not quite statistical

phenomenological models

Nuclear models diverge

nnrc.uio.no

7th May 2024

Nuclear Shapes

Macroscopic manifestation of nucleon interactions.

Quadrupole shape:

- degree of deformation β
- \blacktriangleright asymmetry angle γ

Stable nuclei are often less deformed.

Nuclear Shape Transitions

Potential energy as a function of deformation:

- Different configurations of nucleons
 ⇒ different energy, spin and parity states.
- The nucleus seeks the lowest energy state. \Rightarrow decays by emitting γ -rays.
- Lifetime of excited states is closely linked to deformation.

The Recoil Distance Doppler Shift Method

Time too short to measure: work in distance

Different doppler shift before and after degrader

10 distances: 43 µm to 2664 µm

 \sim 18 h per distance

Produce nuclei in excited states.

Measure $\gamma\text{-}\mathrm{ray}$ energies and

Which nucleus they came from.

nnrc.uio.no

J S Heines (UiO)

Nuclear shape transitions & lifetime measurements

Single γ -ray

 γ - γ coincidence

Single γ -ray Can use all the detected γ -rays \Rightarrow High statistics

Side feeding

$\gamma\text{-}\gamma$ coincidence

$\gamma\text{-}\gamma$ coincidence

nnrc.uio.no

Results

Confirmed shape coexistence in zirconium (Pasqualato et al., EPJ A 2023)

Evidence of rigid triaxiality in ruthenium (Preliminary)

Thank you

Allmond, J. M.¹ Ansari, S.² Arici, T.³ Beckmann, K. S.⁴ Berry, T.⁵ Bruce, A. M.⁶ Clement, E.⁷ Doherty, D.⁵ Dudouet, J.⁸ Esmaylzadeh, A.⁹ Gamba, E.⁶ Gerhard, L.⁹ Gerl, J.³ Georgiev, G.¹⁰ Görgen, A.⁴ Jolie, J.⁹ Ljungvall, J.¹⁰ Kim, Y.-H.⁷ Knafla, L.⁹ Korichi, A.¹⁰ Korten, W.² Koseoglou, P.^{3.11} Labiche, M.¹² Lalkovski, S.¹³ Lauritsen, T.¹⁴ Lemasson, A.⁷ Li, H.-J.⁷ Modamio, V.⁴ Pasqualato, G.¹⁵ Pietri, S.³ Pomorowska, M.¹⁶ Ralet, D.¹⁰ Regis, J. M.⁹ Saha, S.³ Sahin, E.⁴ Siem, S.⁴ Singh, P.² Theisen, C.² Tornyi, T.¹⁷ Vandebroucke, M.² Witt, W.^{3.11} Zielinska, M.² Rudigier, M.⁵

¹Oak Ridge Nat. Lab. ²IRFU ³GSI ⁴Univ. Oslo ⁵Univ. Surrey ⁶Univ. Brighton ⁷GANIL ⁸IPN Lyon ⁹Univ. Koeln ¹⁰IJCLab ¹¹TU Darmstadt ¹²STFC Daresbu ¹³Univ. Sofia ¹⁴Argonne Nat. Lab. ¹⁵IN2P3/CNRS ¹⁶HIL Warsaw ¹⁷Debreczen

And the AGATA, FATIMA and VAMOS collaborations.

- > Overarching goal: understand how nuclei are created.
- > Nuclear models diverge: we need experimental data to constrain them.
- Compare predicted and experimental deformation.
- We determine deformation through lifetimes of excited states.
- Lifetimes $\mathcal{O}(ps) \Rightarrow$ measure distance travelled.

The Nuclear Shell Model

- Protons and neutron are separate.
 - Closed shells mean more stable nuclei.
 - Single-particle or collective excitations.
- Nucleons influence orbital energies

The A \sim 100 region

nnrc.uio.no

nnrc.uio.no

nnrc.uio.no