
Trains status&tests

M. Gheata

Train types run centrally

• FILTERING
– Default trains for p-p and Pb-Pb, data and MC (4)

• Special configuration need to be applied for the different cases (pre-configure stage)
• Std AOD, muons and vertexing
• Running automatically after reco

– On-demand filtering using special tender settings
• Generally for pass2
• Std AOD, muons and vertexing

– Quite stable code, to be moved in Release
– Vertexing is cuts dependent (needs many passes), to be done on demand as

post-filtering from now on (?)
– Memory stable (~2GB) but CPU and disk consuming
– A queue of trains according priorities for non default trains (?)

• Discussed and approved weekly

• PWG trains
– Just started to be run centrally, finished tests
– Probably many trains per PWG needed, managed by PWG

PWG1 QA train

• 20 different modules, 1 to come (FMD)
– Heavy memory requirements (above 3GB)

• Cleanup needed, see next slides

– Train gets kicked out by some sites

• Merging is heavy for runs with too many chunks
– Memory in the last merging step gets too big
– Process only 10% of chunks

• Some new trigger classes used recently (CINT7, EMC7, …)
– QA train was set for kMB, now we need to run it with kAnyInt plus

other triggers
• All tasks requesting a special trigger should filter from the trigger mask and fill

separate histograms (within the memory limit)
• Requirements described in Savannah bug #84007

• To be run with the Release

Testing QA wagons

• Prepare checking scripts to be run on a test machine
– Testing each QA wagon independently on a local dataset
– Checking is based on syswatch.root
– Future support in the alien plug-in for producing the

scripts

• Simple check and fit of memory profiles extracted by
the analysis manager
– Doing a linear fit in a specified range (stable regions) and

extracting memory value + leak
– Subtracting the baseline given by EventSelection task +

OCDB connect
– Not easy to set-up automatically due to memory jumps

Most recent checks

• Versions tested on pcaliense05

– Root v5-28-00e

– AliRoot v4-21-28-AN

• Run tested: 152371 from LHC11c

– 120K events

• Wagons that did not finished the test:

– ZDC (segfault) – savannah #78558

• 20 wagons checked in parallel (few hours)

Resident memory for the train

• Train run on 50 local files (~ twice the size of QA jobs)
• Some leaks make the memory go above 3 GB

Resident memory (1)

BASELINE
(PhysSel +
CDBconnect)

SDDdEdxSDDTPC (!)SPD

VERTEXVZEROQAsym

Resident memory (2)

TRD ITS ITSsaTracks ITSalign

CALO MUONtrig ImpParRes MUON tracking

Resident memory(3)

TOF HMPID T0 ZDC
segfault

Train leak plot

• Fit parameters (p0 + p1*event) for all memory plots
• p0 should subtract the baseline, not plotted here
• p1 (slope) plotted per 100K events (2x what the train usually processes per job)
• Some leaks visible, at a level that does not affect the job (except TPC - more than
200 MB per 100K events)

MB

Output size in memory

• Looping task directory in output file, reading all keys in memory
• Making the difference between the resident memory after and before reading
histograms in memory
• Sum is ~1.1 GB

Performance checks

•Local dataset on a test machine, processing took 2 days for ~100K events
• valgrind –tool=callgrind aliroot –b –q QA.C
• 61.5 % CPU, 38.5 % I/O (ratio is different if accessing remote files)

CPU performance per task

ITS ImpParRes 28.2%
ITS
VertexESD
10.1%

QASym
5.7%

Friends
10.4%

ITS align 5.6% ITS tracking
3.5%

• ITS tasks use ~50% of the CPU time

Trains management

• Trains can be now prepared and checked using
the alien plug-in

• Submission and management now done
mostly by Costin and Latchezar

– We need a simple system that can be used by
train administrators

• Start, stop, cleanup, input datasets

– Defining a queue of central non-default trains

Conclusions

• Currently implemented checking macros for
QA train

• Many central trains and more to come, need
some automated assembly and checking
procedure

• Make train administration easier and allow
more people using it

