
Analysis framework plans

A.Gheata

Offline week 13 July 2011

Some facts

• The number of analysis tasks registered in the system
constantly increase with time, resources stay mostly
constant.

• Existing analysis code growing fat acording to: « Make
it work then add on top »

• Old data need to be reprocessed regularly while new
data filling the pipeline.

• Most analysis code not written by expert C++
developers.

• The framework was developed to give freedom, not
put limits, but the free space has been exhausted and it
becomes more difficult to face contingencies…

Action list

1. Assess correctly the current status in terms of CPU share and disk space:
– Ratio between organized/chaotic analysis
– Central productions: automatic/on demand
– Estimate train costs before launching (!)

2. Rationalize production requests and central trains
– Assess priorities and run a train queue
– Implement more train management tools to be used by experts

3. Provide more support and encourage organized analysis
– Build tools to facilitate assembling trains while factorizing the train

management effort
– Give regular slots in the production queue to PWG analysis

4. Implement tools for getting insight over what is done wrong in analysis
– Automatic diagnosis of memory, CPU, histogram usage, common errors

(mostly implemented)
– Generation of test setups for individual tasks via the plug-in

• Leak detector, performance maps, output analyzer

Support for task metadata

• What for: Support for describing how to run a given
task
– Location of AddTask macro, libraries needed, handler type,

utility tasks (e.g. physics selection, centrality, or tender)…
– Embed this info in a class (e.g. AliAnalysisTaskConfig)

• Able to read/write from root or text file

• Use case: The plug-in could read one or more such
modules and generate the train steering macro
– This may give more flexibility and modularity in future

• This approach is based on some recent discussions for
automating the train procedure that is being looked
into

Task configuration snippet

AliAnalysisTaskConfig myConfig("AliAnalysisTaskQAsym");
myConfig.SetLibs("libPWG1");
myConfig.SetMacro("$ALICE_ROOT/PWG1/PilotAnalysis/AddTaskQAsim.C");
myConfig.SetArguments("");
myConfig.SetDataType("ESD AOD MC");
myConfig.SetDependencies("AliPhysicsSelectionTask")
plugin->AddModule(&myConfig);
...
plugin->GenerateTrain("full")

• The configuration can be preloaded from a root file or text produced via
web form, then altered if needed (add dependencies, run parameters, ...)
• Many of the configuration needed for existing will probably stay

unchanged and persistent (OADB)
• Trains can be configured and assembled on the fly by PWG train managers

(see Jan-Fiete's proposal)
• The skeleton of such generated train already discussed, waiting for

implementation

Analysis trains operated by PWG

• Purpose: test and operate physics trains according a
central schedule
– To change the balance between chaotic and organized

analysis
– To allow planning according priorities and share the

production-related responsibilities with PWG

• PWG minimal trains to enter soon production phase
– Tests already done, trains already prepared
– Procedure for ~automatic testing implemented for PWG1

QA train (see Mihaela’s talk), to be done for PWGn once in
production

• New exercise that will steam-up gradually

Analysis practice sniffer

• How many of your histograms actually get filled ?
Do you know that the choice of your histogram
types (e.g. TH2F vs. TH2S) highly impacts on the
memory size and is rarely appropriate ? Do you
know that for unoccupied un weighted large
histograms you can get profit in using a histogram
buffer ?

• Most of this can be automatically spotted and
advertised by the framework in Terminate

• Some changes in ROOT would help
– Lazy histogram array allocation, auto-buffering

