

PWG4 Status

Gustavo Conesa Balbastre

PWG4 analysis modules

- Jet Tasks: Christian Klein-Bösing et al.
- Photon conversions, GammaConv: From Ana Marin et al.
- JCORRAN: 2 particle correlations from Jan Rak et al.
- PartCorr: Particle identification (γ , π^0 , η , e, ω , ...) and correlation (with jets, hadrons ...) package.
- Omega3pi: Boris Polichtchouk
- Et: Christine Nattrass, Oystein Djuvsland, David Silvermyr,...
- CaloCalib: Calorimeters (EMCAL) calibration, re-clusterization module.
- UserTasks: Simple user analysis tasks.

PWG4 analysis modules

- Photon conversions, GammaConv
 - Discussed in offline meeting: Store conversion photons in AOD with ESD filtering train if output not large
- UserTasks:
 - PHOS_pp_pi0 (used for paper): Yuri Kharlov
 - CaloCellQA: Simplified (smaller?) task for calorimeter QA,
 Y. Kharlov, O. Driga
 - DiHadronCorrelations (used for paper): C. Loizides

Christian Klein-Bösing

"Train" Running

- No active "global" PWG4 train
- Jet train for analysis and code development
 - Pb+Pb (CKB)
 - p+p (Sidhart Kumar Prasad)
 - Current development with par-Files difficult
 - Unresolved dependence in ESD.par
 - AliTriggerConfiguration.h only in STEER not STEERBase
 - https://savannah.cern.ch/bugs/?83104

Christian Klein-Bösing

Tracks in the AOD

- Many analysis need a maximum uniformity in phi
- Not guaranteed with the usage/requirement of ITS information
- Usage of TPC only tracks
 - Uniform phi
 - additional constraint to SPD vertex

phi for jets above 50 GeV

Implementation in the Christian Klein-Bösing

- Optional extra set of tracks in the track branch
- Selected with ESD filter/ESD track cuts as usual
 - For selected ESD tracks TPC only information is processed and copied to a new AODTrack
 - To avoid confusion filter maps of global and TPC constrained tracks are disjoint (a&b==0)
 - TPC constrained tracks have negative ID
 - AliAODTrack::IsTPCConstrained() is true (recent addition)
- Optional to store only the complementary tracks
 - I.e. without proper ITS information but good TPC (hybrids)

TPC Constrained and Hybrid Tracks

Klein-Bösing

Achieved uniform phi but momentum resolution at high p_T (>50 GeV) not satisfactory for TPC only tracks

TPC constrained tracks (complement)

Improvement with expanding this method to Global Constrained tracks (more iterations compared to TPC only)

Cutting on AOD Level

- Filter Bits i.e. test whether a certain set of ESDTrackCuts did accept the track
- Direct cutting on AOD variables
 - No common cut class
 - Matching of AOD variables

Ncls vs NclusterMap TPC

Number of clusters from ESD track not the same as number of bits in the cluster map. Only clustermap is stored in AOD.

Cluster map: contains all clusters in the road of the track
AliESDtrack::GetTPCncls(): all clusters used for updating the Kalman filter

Why do we also see ClusterMap<NClusters for low pT (<20 GeV)?

#Crossed rows

(Standard ESD level cut)

Marta Verwejj

Number of crossed rows is calculated from the cluster map.

A track with large number of crossed rows can have a low number of clusters used in the reconstruction.

#crossed rows > 120 but still tracks with small number of clusters left Low number of clusters in fit → bad momentum reconstruction

The cut on the number of clusters in the fit is essential to remove badly reconstructed momenta.

AOD:

- Number of clusters not accessible
 - Be aware that AOD and ESD provide different answers for GetTPCNCls()
- Can be changed in future AOD production

ESD

- Only cluster map of all clusters on the road is store (#crossed rows cannot be calculated using the cluster map of Kalman filter)
- New reconstruction required?

- Embed background (HI data, HIJING ...) with some signal (simulated, p0, jets ...)
- Analysis frame modified 2 years ago to do it
- Very first order way to do embedding if not done during reconstruction
- How it works:
 - AODs only (more events per file)
 - Merge normal collection of data and a external AOD file with signal. Embed event by event.
 - If signal file is larger than events in collections, a event shift number can be specified to not repeat the signal event.
 - Handled in AliAnalysisTaskSE and AliAODInputHandler.
 - Merged output is put in the AOD output
 - do not use with ESD filter!

What is merged

- Arrays with tracks, calorimeter clusters, mcParticles, in both events are added to the same output list.
- What is really merged are the calorimeter cells, 2 VCaloCells present in both events that come from same cell, have the energy added in the output AOD.
- The header/vertex of the event coming from the collection is replicated in the output AOD.

Recent changes:

- PHOS clusters and cells now also merged (Hisa Torii)
- Switch added to select what to merge or not clusters, cells and tracks
- Open files not only in local node but somewhere else in alien.

- What has to be added to the macro
 - AliOutputAODHandler *outAodHandler ...
 - outAodHandler->SetCreateNonStandardAOD();
 - AliInputAODHandler *aodHandler ...
 - aodHandler->SetMergeEvents(kTRUE);
 - aodHandler->SetMergeTracks(kFALSE);
 - aodHandler->SetMergeEMCALClusters(kFALSE);
 - aodHandler->SetMergeEMCALCells(kTRUE);
 - aodHandler->SetMergePHOSClusters(kFALSE);
 - aodHandler->SetMergePHOSCells(kFALSE);
 - aodHandler->AddFriend("signal/AliAOD.root");
 - aodHandler->SetMergeOffset(event0); // start from event0 in signal file

 Ongoing analysis to try to estimate PHOS and EMCAL performance in HI environments

- Tests on grid work but we hit some problems
 - Signal AOD file size cannot be too large.
 - Access to signal file located somewhere in the grid not easy.

Calorimeter Tenders

- AliPHOSTenderSupply by Dmitri Peressounko
 - Used for recalibration
- AliEMCALTenderSupply by Deepa Thomas
 - Cluster recalibration
 - Clusters with bad channel rejection
 - Recalculation of cluster position
 - Recalculation of cluster-track matching
- Not used yet to produce AODs with the train.
- Correction parameters stored in private files in alien
 - Transform into OADB format
 - EMCAL alignment matrices already in OADB/PWG4/JetReconstruction
 - Where to put the other parameters (recalibration, bad channel map ...)

Jan Fiete Grosse-Oetringhaus Shown in offline weekly meeting

Analysis Train: Idea

- Setting up and operating analysis trains is a lot of work
 - Specific settings for each wagon
 - Wagons have bugs, leaks etc.
 - → Automatic configuration needed
 - → Automatic testing needed (on a subset of the same data the train will run on)
- We have collected some ideas which we want to give a try
 - using at the beginning the PWG4 train

Jan Fiete Grosse-Oetringhaus Shown in offline weekly meeting

High Level Description

- Train runs on analysis tag (no modifications allowed)
- User registers task
- Train operator triggers train test
- Test results are fed back to Monalisa
 where the user & operator can see them
- Operator starts train with tasks that succeeded and have no (significant) leaks
- These steps are operated from MonaLisa

Jan Fiete Grosse-Oetringhaus

Shown in offline weekly meeting Some Technical Details

- Container that contains task configuration (already shown by Andrei)
 - Currently identified configuration items
 - Location of AddTask macro + parameters
 - Required libraries
 - Tasks that have to run before
- Train testing
 - Tasks are tested one by one
 - On subset of data on which the train will run.
 - CPU/Real time, memory extracted w.r.t baseline
 - Baseline from test with just PhysSel + Centrality
- Train macro generation
 - By analysis framework using the wagons selected by the operator
 - Macros for testing (wagon by wagon)
 - Macros for full train (all wagons)
- Overall train submission
 - Using the already existing ML submission framework (including merging jobs)

