

Data & Storage Services

The EOS Storage System

Andreas J. Peters

CERN IT-DSS group

Outline

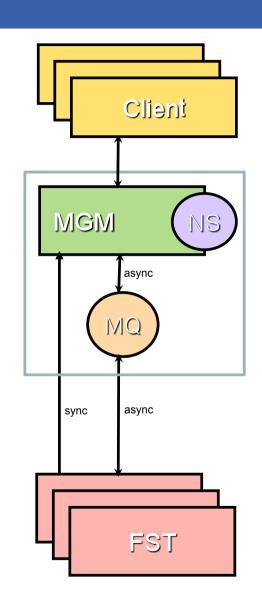
- EOS status and production experience
 - EOS Architecture
 - Operations at CERN
 - Benchmarks
 - License
 - Code Base & Pointers
 - Roadmap/Outlook

EOS: What is it ...

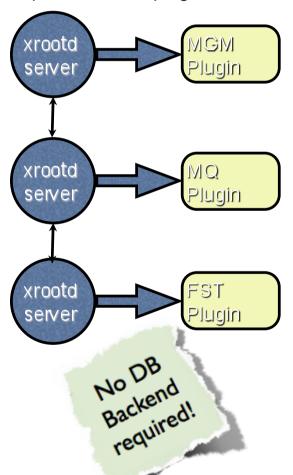
- Easy to use standalone disk-only storage for user and group data with in-memory namespace
 - Few ms read/write open latency
 - Focusing on end-user analysis with chaotic access
 - Based on XROOT server plugin architecture
 - Adopting ideas implemented in Hadoop, XROOT, Lustre et al.
 - Running on low cost hardware
 - no high-end storage
 - At CERN: Complementary to CASTOR

Architecture

Management Server


Pluggable Namespace, Quota Strong Authentication Capability Engine File Placement File Location

Message Queue


Service State Messages
File Transaction Reports
Shared Objects (queue+hash)

File Storage

File & File Meta Data Store Capability Authorization Check-summing & Verification Disk Error Detection (Scrubbing)

Implemented as plugins in xrootd

Access Protocol

- EOS uses XROOT as primary file access protocol
 - The XROOT framework allows flexibility for enhancements
- Protocol choice is not the key to performance as long as it implements the required operations
 - Client caching matters most
 - Actively developed, towards full integration in ROOT (rewrite of XRootD client at CERN)
- SRM and GridFTP provided as well
 - BeStMan, GridFTP-to-XROOT gateway
- Single & Multi User FUSE Mount (experimental)

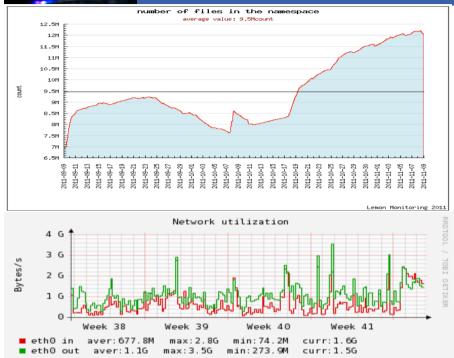
Features

- Storage with single disks (JBODs, no RAID arrays)
 - redundancy by s/w using cheap and unreliable h/w
- Network RAID within disk groups
 - Currently file-level replication
- Online file re-replication, re-organization
 - Aiming at reduced/automated operations
- Tunable quality of service
 - Via redundancy parameters (directory based)
- Optimized for reduced latency
 - Limit on namespace size and number of disks to manage
 - Currently operating with hardware limit of 40M files and 10K disks
- Achieving additional scaling by partitioning the namespace
 - Implemented by deploying separated instances per experiment

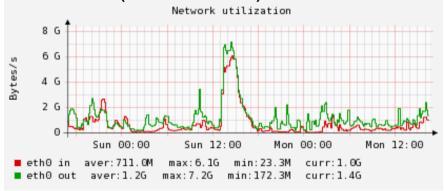
Self-healing

- Failures don't require immediate human interventions
 - Metadata server (MGM) failover
 - Disks drain automatically triggered by I/O or pattern scrubbing errors after a configurable grace period
- Drain time on production instance < 1h for 2 TB disk (10-20 disks per scheduling group)
 - Sysadmin team replaces disks 'asynchronously', using admin tools to remove and re-add filesystems
 - Procedure & software support is still undergoing refinement/fixing
- Goal at CERN: run with best effort support

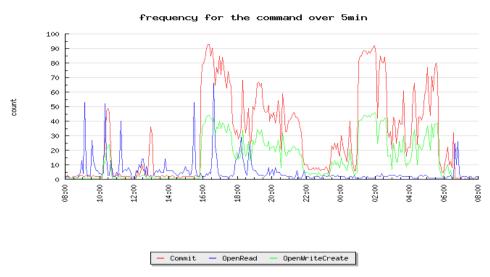
Entering production

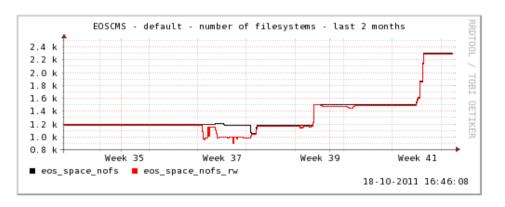


- Field tests done (Oct 2010 May 2011)
 with ATLAS and CMS, production since summer
- EOS 0.1.0 currently used in EOSCMS/EOSATLAS
 - Software in bug-fixing mode, frequent releases though
- Pools migration from CASTOR to EOS mostly done
 - Currently at 2.3 PB usable in CMS, 2.4 PB in ATLAS
 - Required changes in ATLAS/CMS experiment frameworks
 - User + quota management, user mapping
 - Job wrappers
 - => no change in ALICE model
 - Several pools already decommissioned in CASTOR
 - E.g. CMSCAF



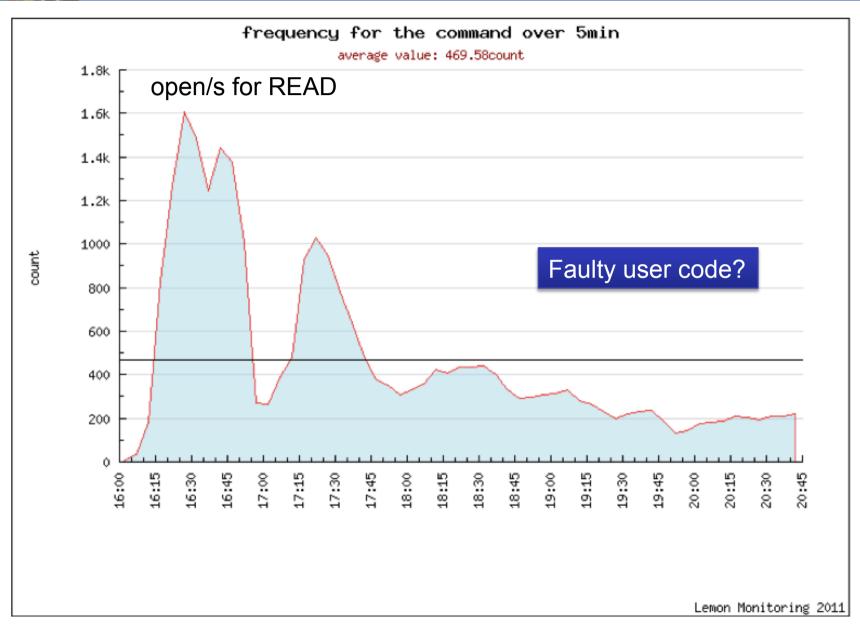
Usage Statistics




ATLAS instance: throughput over 1 month (entire traffic)

Pool throughput during a node drain

ATLAS instance: file ops per second


CMS instance: hardware evolution

Production Performance

EOSATLAS yesterday

Performance – Why EOS?

LATEST NAMESPACE BENCHMARK EOS 0.1.1-1

O-BYTE FILES

NAMESPACE 1 MIO ENTRIES - 512 SERVER THREADS 1x8-CORE MGM + 8xStorage FSTs

350 & 10.000 ROOT CLIENTS:

3KHZ FILE OPEN O_CREAT 1 REP

2KHZ FILE OPEN O_CREAT 2 REP

8KHZ FILE OPEN O_RDONLY (2MS)

26 & 20 KHZ STAT

FIND
NAMESPACE 1 MIO ENTRIES

190 kHz RETURNING LFN, SIZE & CHECKSUM

BOOT
12M ENTRIES NAMESPACE
170 KHz = 70s BOOT TIME
1KB PER ENTRY IN MEMORY

License – GPL3

Included since Release 0.1.1-1

```
root@eosdevsrv1:~ — ssh — 78×15
   root@eosdevsrv1:~ - ssh
[root@eosdevsrv1 ~]# eos
=> selected user role ruid=<0> and group role rgid=<0>
# EOS Copyright (C) 2011 CERN/Switzerland
# This program comes with ABSOLUTELY NO WARRANTY; for details type `license'.
# This is free software, and you are welcome to redistribute it
 under certain conditions; type `license' for details.
*********************************
# Welcome to EOSDEV - have a nice day
******************
EOS_INSTANCE=eosdev
EOS SERVER VERSION=0.1.1 EOS SERVER RELEASE=1
EOS_CLIENT_VERSION=0.1.1 EOS_CLIENT_RELEASE=1
EOS Console [root://localhost] |/> ■
```


EOS Project

Contact		
EOS Project		
<u>Name</u>	<u>Position</u>	E-mail
Project Mailing List		project-eos@cern.ch
EOS Development		
Name	Position	E-mail
Andreas Peters	Core Developer	Andreas.Joachim.Peters@cern.ch
Lukasz Janyst	Core Developer	Lukasz.Janyst@cern.ch
Elvin Alin Sindrilaru	Core Developer	Elvin.Alin.Sindrilaru@cern.ch
EOS Operation		
Name	<u>Position</u>	E-mail
Jan Iven	Operation Manager	Jan.lven@cern.ch
<u>Luca Mascetti</u>	Operation Manager	Luca.Mascetti@cern.ch
IT-DSS Group		
Name	Position	E-mail
Alberto Pace	Group Leader	Alberto.Pace@cern.ch
Dirk Duellmann	Development Section Leader	Dirk.Duellmann@cern.ch
Massimo Lamanna	Operations Section Leader	Massimo.Lamanna@cern.ch

EOS Code Base

- cmake project C++ (75k lines)
- requires gcc >=4.4
- supported platforms
 - server: SLC5/SCL6 64 bit
 - client: SLC5/SLC6 32+64 bit + OSX
- Dependencies
 - build: cmake, xrootd dev, sparsehash, cppunit, attr ...
 - runtime: xrootd,crypto,ncurses,uuid,z

EOS Software Distribution

- Source: GIT http://eos.cern.ch/cgi-bin/cgit.cgi/eos/
- RPMS:
 - Releases http://eos.cern.ch (not yet open)
 - HEAD Build Server https://teamcity-dss.cern.ch:8443/
- XRootD RPMS via http://xrootd.org
- EOS AFS Client Installation
 /afs/cern.ch/project/eos/

Release / Roadmap

- EOS 0.1.0 (xrootd 3.0.4) deployed at CERN
 - 0.1.0-rc42
- EOS 0.1.1 (xrootd 3.1.0) waiting freeze&deployment
 - -0.1.1-1
- EOS 0.2.0 expected by end of the year
 - Main Features
 - File-based redundancy over hosts
 - Dual Parity Raid Layout Driver (4+2)
 - ZFEC Driver (Reed-Solomon, N+M, user defined)
 - Integrity & recovery tools
 - Client bundle for User EOS mounting (krb5 or GSI)
 - MacOSX
 - Linux 64bit

EOS in the ALICE Model

- ALICE authorization works like in standard XRootD setups
- EOS can be subscribed easily to a global redirector
- Third party copy
 - xrd3cp not natively supported AS
 - FTSOFS (xrd3cp) can be deployed and run via a gateway xrootd server on additional ports to push from EOS
 - EOS will provide 'eos 3pget & 3pput' via external transfer
 queues (uses already internal transfer queues between EOS disk server)
 - Still hoping for standard XRootD solution!
- For ROOT, aliensh etc. looks like any XRootD storage no API changes
- Offers many operational advantages

Conclusions

- EOS is in production for analysis
 - Two production instances running
 - result of very good cooperation with experiments
 - today managing ~4.600 disks at CERN (9.2 PB raw space)
 - Expand usage and gain more experience
 - Outside Usage
 - No organized support for outside usage
 - But: one CMS instance at Fermilab with low effort
 - CERN deployment is very large scale => don't expect particular problems in small installations, particular when storing on RAID arrays
 - Move from fast development and release cycles to reliable production mode
- EOSALICE (?)