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Motivation

Some experimental analyses, particularly in flavour physics, can be quite
complex.

They may involve fitting large multidimensional datasets with complicated
models to determine large numbers of free parameters.

Often the model also contains many nuisance parameters which describe
critical experimental effects, but are not of interest to the wider community.

One example is our (soon to be published) LHCb B0→ K∗0µ+µ− amplitude
analysis which involves fitting for 150 parameters, of which around 60 are
nuisance parameters that we do not publish.

Somehow how the results need to be communicated in a clear, correct, and
useful way.

This can be difficult to achieve by simply publishing the numbers in a paper.
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Surrogate data approach

One possibility is to provide unfolded signal only toy datasets that we call
surrogates, which essentially represent the real data but without the
experimental complications such as resolution and background.

An ensemble of surrogates would be generated from the covariance matrix of
the full model used in the experimental analysis.

Uncertainties and correlations accounting for all nuisance parameters would thus
be encoded in the ensemble.

A theorist could then fit back these surrogates with whatever model they
choose, neglecting experimental effects, as long as they average the results
over the ensemble.
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Surrogate data approach

1. Fit 
the real 

data

3. Fit 
the toys 

4. Average 
over the

ensemble

2. Generate 
toy ensemble
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Key points to demonstrate

For this to be useful, it is necessary to demonstrate that the approach really
works and to try out some potential use cases, e.g. to show that:

1 The results of fitting back the ensemble of surrogates with the same model
reproduces the central values and covariance matrix used to generate them.

2 Alternative models can be fit to the surrogates such that the averaged results
also reproduce the results of fitting the original data with that alternative model.

I have done a proof of concept study to demonstrate point 1 quite clearly
using a simple example model.

Unfortunately I haven’t quite made it around to demonstrating point 2 yet, but
have a few ideas worth exploring.
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Proof-of-concept - amplitude analysis

Example: Two relativistic Breit-Wigner resonances interfering with a non-resonant
component, all convolved with a Gaussian resolution model and added on an
exponential background shape.

e.g. Xi → Xf ℓ
+ℓ− dilepton spectrum:
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∝ |Atotal(q
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1 Perform an amplitude analysis to measure the magnitudes and phases of the
resonances relative to the non-resonant component.
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Proof-of-concept - real data proxy

Example: Two relativistic Breit-Wigner resonances interfering with a non-resonant
component, all convolved with a Gaussian resolution model and added on an
exponential background shape.

e.g. Xi → Xf ℓ
+ℓ− dilepton spectrum:

dΓ

dq2
∝ |Atotal(q

2)|2,

Atotal = ANR +
∑
j

ηje
iδjABW,j ,

ANR(q
2) =

∑
i

CiFi (q
2).

1 2 3 4 5 6
)2 (GeV/c2q

10

210

310

410 )
2

E
ve

nt
s 

/ (
 0

.0
59

 G
eV

/c

Experimental data and true PDF

Experimental data
Total PDF

 Resolution⊗Signal 
Signal
Background

Experimental data and true PDF

1 Generate a dataset from the full true model to act as a proxy for the
”real data”.

This a sample of 200k events.
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Proof-of-concept - experimental results

2 Fit the ”real data” proxy with the same model to obtain a set of
experimental fit results.
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Here we are measuring the relative phases, δi , and magnitudes, C and ηi , of
the three signal components, plus the experimental nuisance parameters, i.e.
background slope and fraction, width of resolution.
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Proof-of-concept - surrogate ensemble

3 Generate an ensemble of signal only toy datasets by fluctuating best fit
values according to the covariance matrix.
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An ensemble of 350 toys was generated with the background and resolution
removed.

Each toy has 1M events in this example.
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Proof-of-concept - toy fits

4 Fit back each toy in the ensemble using only the signal-only model.
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N.b. the individual covariance matrices from these fits do not capture the
experimental uncertainties.

In fact, the toys should be large enough that their statistics do not contribute
an additional significant source of uncertainty in the end.
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Proof-of-concept - check results

5 Analyse the results over the ensemble.

Parameter central values, uncertainties, and correlations obtained by averaging
over the toy ensemble.
Should all agree with those of the original fit to the real data.
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Ellipses show correlation between fit parameters in the fit to the ”real data”.

Histogram shows the distribution of fit results from the surrogate ensemble.

Central values, errors, and correlations from experimental results are reproduced.
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Proof-of-concept - check results
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Key points to demonstrate

For this to be useful, it is necessary to demonstrate that the approach really
works and to try out some potential use case, e.g. to show that:

1 The results of fitting back the ensemble of surrogates reproduces the central
values and covariance matrix used to generate them.

2 Alternative models can be fit to the surrogates such that the averaged
results also reproduce the results of fitting the original data with that
alternative model.

Below are some ideas we have considered for showing how this can be interesting:
1 Fitting for interfering resonance magnitudes and phases often results in

multiple solutions.

It would be good to show that the multiple solutions persist in the surrogates,
e.g. fit back starting near expected symmetry points.

2 Fitting for the non-resonant amplitude ANR(q
2) = CF (q2) uses ”theory input”

to fix/constrain the ”form factor”. Alternative input will modify the ”Wilson
coefficient”.

Fit back surrogates with alternative ”form factor” model, F (q2), and see if the
change in C is recovered.
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Additional considerations

1 There is model dependence baked into the surrogates.

To consider an extreme example, one could never search for a hypothetical third
resonant contribution in the example given earlier — it simply wasn’t generated
in the surrogates.
The best fit to the surrogates will always be given by the model that was used
to generate them.

2 With that said, if one can somehow show that the description of background
and experimental effects is accurate in the full model AND that the full model
gives a good fit to the data, then it follows that the signal must be well
described by the model too.

In that sense, it makes sense to use the surrogate data approach to test the
compatibility of alternative signal models with the data and investigate how
parameters of interest might change.
This would amount to reattributing features of the data to different physics
parameters, e.g. WCs vs FFs or non-local interference.
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Summary

We are proposing a method of sharing complicated experimental results with
the theory community that we call the surrogate data approach.

It involves generating ensembles of toy datasets with experimental nuisance
effects removed, i.e. unfolded signal only toys.

Experimental uncertainties and correlations are encoded in the ensemble by
fluctuating model parameters according the covariance matrix.

The basics of the approach have been validated with simple example models.

I have highlighted a few potential limitations of the approach.

Some additional demonstrations of possible use cases are still on the to do list.
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