



# HNL and LLP at NA62 (not only) beam-dump

#### Jan Jerhot

Max Planck Institute for Physics

LPHE seminar; April 22, 2024



European Research Council Established by the European Commission

#### Introduction: NA62 experiment

Fixed-target experiment at CERN SPS (north area - ECN3 experimental cavern)



Jan Jerhot (MPP)

E DQC

#### Introduction: NA62 experiment

- Main goal: study of ultra-rare  $K^+ \to \pi^+ \nu \bar{\nu}$  decay, yet NA62 covers: broad kaon physics program (precision measurements, LFV/LNV decays, LLP searches) beam-dump physics (LLP searches) program + more exotic searches (neutrino tagging, ..)
- Data-taking period 2016-18 (Run 1):  $K^+ \to \pi^+ \nu \bar{\nu}$  analysis of Run 1 data set published,<sup>2</sup> 2021-LS3(2025): Run 2 ongoing.



<sup>2</sup>Measurement of the very rare  $K^+ \rightarrow \pi^+ \nu \bar{\nu}$  decay. NA62 Collaboration. JHEP 06 (2021) 0935 [2103  $\pm 3389$ ]  $\rightarrow \pm \pm 5 \sim 0.0$ Jan Jerhot (MPP) HNL and LLP at NA62 beam dump LPHE seminar, April 22, 2024 2 / 31

#### Introduction: LLPs

Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);

| NP Particle                         | type         | SM portal (dim $\leq 5$ )                                                                                             | PBC          | decay c                  | hannels ( $m \lesssim 1{ m GeV}$ )        |
|-------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|-------------------------------------------|
| <b>HNL</b> $(N_I)$                  | fermion      | $F_{\alpha I}(\bar{L}_{\alpha}H)N_I$                                                                                  | 6-8          | $\pi\ell, K\ell, \ell_1$ | $\ell_2 \nu$                              |
| dark photon $(A'_{\mu})$            | vector       | $-(\epsilon/2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$                                                                      | 1-2          | ll                       | $2\pi, 3\pi, 4\pi, 2K, 2K\pi$             |
| dark Higgs $(S)$                    | scalar       | $(\mu S + \lambda S^2) H^{\dagger} H$                                                                                 | 4-5          | ll                       | $2\pi, 4\pi, 2K$                          |
| $\mathbf{axion}/\mathbf{ALP}$ $(a)$ | pseudoscalar | $\frac{(C_{VV}/\Lambda)aV_{\mu\nu}\tilde{V}^{\mu\nu}}{(C_{ff}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f}$ | $9,11 \\ 10$ | $\gamma\gamma, \ell\ell$ | $2\pi\gamma, 3\pi, 4\pi, 2\pi\eta, 2K\pi$ |

• Dark Sector (SM-DM) portals typically probed:

# Introduction: LLPs

Search for New Physics (NP) at intensity frontier with fixed-target experiments:

- Complementary to energy frontier (LHC) and indirect searches (precision measurements, LNV, etc.);
- Smaller masses (typically MeV-GeV scale) but much lower couplings accessible (large statistics);
- Dark Sector (SM-DM) portals typically probed:

| NP Particle                        | type         | SM portal (dim $\leq 5$ )                                       | PBC       | decay c                  | hannels ( $m \lesssim 1  { m GeV}$ )      |
|------------------------------------|--------------|-----------------------------------------------------------------|-----------|--------------------------|-------------------------------------------|
| <b>HNL</b> $(N_I)$                 | fermion      | $F_{\alpha I}(\bar{L}_{\alpha}H)N_I$                            | 6-8       | $\pi\ell, K\ell, \ell_1$ | $\ell_2 \nu$                              |
| dark photon $(A'_{\mu})$           | vector       | $-(\epsilon/2\cos\theta_W)F'_{\mu\nu}B^{\mu\nu}$                | 1-2       | ll                       | $2\pi, 3\pi, 4\pi, 2K, 2K\pi$             |
| dark Higgs $(S)$                   | scalar       | $(\mu S + \lambda S^2) H^{\dagger} H$                           | 4-5       | ll                       | $2\pi, 4\pi, 2K$                          |
| $\mathbf{axion}/\mathbf{ALP}\ (a)$ | pseudoscalar | $(C_{VV}/\Lambda)aV_{\mu\nu}\tilde{V}^{\mu\nu}$                 | $^{9,11}$ | $\gamma\gamma,~\ell\ell$ | $2\pi\gamma, 3\pi, 4\pi, 2\pi\eta, 2K\pi$ |
|                                    |              | $(C_{ff}/\Lambda)\partial_{\mu}a\bar{f}\gamma^{\mu}\gamma^{5}f$ | 10        |                          |                                           |

Two types of direct searches for NP particles at fixed-target experiments:

- NP particle production in SM particle decays reconstruction from both initial and final state particles
- NP particle decay to SM particles reconstruction of original particle from the SM final states

NA62 experiment can do both in two modes of operation - kaon mode and beam-dump  $mode_{A,C}$ 

### NA62 experiment in kaon mode

- 400 GeV/c primary  $p^+$  beam impinges Be target, 75 GeV/c secondary beam selected (~ 6% of  $K^+$ ) using **TAX** collimators
- $K^+$  decay-in-flight in 60 m long fiducial volume (FV)<sup>3</sup>;



- K<sup>+</sup> tagged by **KTAG** and 3-mom. determined by **GTK**;
- Decay products' 3-mom. measured by **STRAW**, time measured by **CHOD** PID given by **LKr**, **MUV1**, **MUV2** and **RICH**;

 $\mu$  ID provided by **MUV3**;

• Photons can be vetoed by **LKr** and at large angles by 12 **LAV** stations or by **SAC/IRC** at small angles;

• Overall experimental time resolution reaches  $\mathcal{O}(100)$  ps

<sup>3</sup>The beam and detector of the NA62 experiment at CERN. NA62 Collaboration. 2017 *HNST* **12** P05025, [1703:08501] Jan Jerhot (MPP) HNL and LLP at NA62 beam dump LPHE seminar, April 22, 2024 4 / 31

#### Search for LLP (escaping detection) in $s \to d$ transition

- DS or ALP with  $C_{WW}, C_{GG}, C_{qq}$  can be produced in FCNC decays
- $K^+ \to \pi^+ \nu \bar{\nu}$  has the same signature as  $K^+ \to \pi^+ X(X)$  with X escaping (search for an excess in  $K_{\pi\nu\nu}$ )



<sup>4</sup>Measurement of the very rare  $K^+ \rightarrow \pi^+ \nu \bar{\nu}$  decay. NA62 Collaboration. JHEP 06 (2021) 093 $\equiv$ [2103 $\equiv$ 5389]  $\approx$ 

# Search for LLP (escaping detection) in $s \to d$ transition

• Interpretation of  $K^+ \to \pi^+ \nu \bar{\nu}$  result in terms of DS and ALP models:



 $\begin{array}{c} 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-4} \\ 10^{-4} \\ 10^{-4} \\ 10^{-5} \\ 10^{-6} \\ 1 \\ 50 \\ 100 \\ 150 \\ 200 \\ 250 \\ 300 \\ 350 \\ 400 \\ m_{2} \left[ \text{MeV} \right] \end{array}$ 

Figure: Bound on the dark scalar mixing angle.<sup>5</sup>

• Study in progress:  $K^+ \to \pi^+ \pi^0 a$  (ALP escaping)

Figure: Bound on the ALP coupling to up quark.<sup>6</sup>

<sup>5</sup>Measurement of the very rare  $K^+ \to \pi^+ \nu \bar{\nu}$  decay. NA62 Collaboration. JHEP 06 (2021) 093, [2103.15389] <sup>6</sup>New physics searches at kaon and hyperon factories. E. Goudzovski *et al.*. Rept. Prog. Phys. 86 (2023)  $\mp$  016204.  $\Im \Im \Im$ Jan Jerhot (MPP) HNL and LLP at NA62 beam dump LPHE seminar, April 22, 2024 6 / 31

### Search for LLP (decaying inside FV) in $s \to d$ transition



Reinterpretation of precision measurement  $K^+ \to \pi^+ \gamma \gamma$  as  $K^+ \to \pi^+ a(a \to \gamma \gamma)$ :

<sup>7</sup>Measurement of the  $K^+ \rightarrow \pi^+ \gamma \gamma$  decay. NA62 Collaboration. Phys.Lett.B 850 (2024) ±38513; [231±01837] > 

### Search for LLP (decaying inside FV) in $s \to d$ transition

Reinterpretation of search for the ultra-rare  $K^+ \to \pi^+ e^+ e^- e^+ e^-$  decay BR $(K_{\pi 4e}) = 7.2 \times 10^{-11}$ :

- no signal observed, BR $(K_{\pi 4e}) < 1.4 \times 10^{-8}$  at 90% CL
- $K^+ \to \pi^+ aa(a \to e^+e^-)$  or  $K^+ \to \pi^+ S(S \to A'A', A' \to e^+e^-)$ interpretation
- QCD axion excluded as a possible explanation of the 17 MeV anomaly



Figure: Upper limit at 90% CL on the ALP BR.  $^8$ 

Figure: Bound on the combined BRs of the decay chain.

<sup>8</sup>Search for  $K^+$  decays into the  $\pi^+ e^+ e^- e^+ e^-$  final state. NA62 Collaboration. Phys. Lett. B 846 (2023) 138193, [2307.04579]

# Search for LLP in $K^+ \to \ell^+ X$ decay

- Two analyses searching for a spike above the  $m_{\text{miss}}^2$  spectra of  $K^+ \to e^+ X$  and  $K^+ \to \mu^+ X$
- X = HNL (e- or  $\mu$ -coupled): BR<sub>K<sup>+</sup> \to \ell<sup>+</sup>N</sub> = BR<sub>SM</sub> ·  $\rho_{\ell}(m_N) \cdot |U_{l4}|^2$
- $K \to eN: m_N \in 144 462 \,\mathrm{MeV}/c^2$  $K \to \mu N: m_N \in 200 - 384 \,\mathrm{MeV}/c^2$
- Reinterpretation for  $\nu X$  with X = S/V
- Search for  $K^+ \to \mu^+ \nu_\mu X(X \to \gamma \gamma)$ in progress



Figure: UL at 90% CL on  $|U_{\ell 4}|^2$ from production searches, red:  $|U_{e4}|^2$ , blue:  $|U_{\mu 4}|^{2.9}$  Figure: UL on  $BR(K^+ \rightarrow \mu^+ \nu X)$ , where X is scalar or vector.<sup>10</sup>

### NA62 experiment in beam-dump mode

• target removed and TAX closed, KTAG and GTK not used:



-

### NA62 experiment in beam-dump mode



Jan Jerhot (MPP)

LPHE seminar, April 22, 2024 10 / 31

# NA62 experiment in beam-dump mode



• two trigger lines for charged particles: Q1/20 ( $\geq 1$  hits in CHOD), H2 (> 1 in-time hit in CHOD)

- $N_{\text{POT}} = (1.4 \pm 0.28) \times 10^{17}$  protons on target (POT) collected in 2021; plan:  $N_{\text{POT}} = 10^{18}$  in Run 2
- NP searches with ee and  $\mu\mu$  final states published;<sup>4</sup>; preliminary result on hadronic decays

 ${}^{4}$ NA62 Collaboration JHEP 09 (2023) 035 [2303.08666]; [2312.12055]

# Search for LLP decay to $\ell^+\ell^-$ in beam-dump mode (strategy)

An LLP X with  $\ell^+\ell^-$  decay can be e.g. a DP, DS or ALP

### Search for LLP decay to $\ell^+\ell^-$ in beam-dump mode (strategy)

An LLP X with  $\ell^+\ell^-$  decay can be e.g. a DP, DS or ALP  $\Rightarrow$  6 combinations of production and decay channels ( $e^+e^-, \mu^+\mu^-$ ) considered:

- DP: p-Bremsstrahlung production  $p + N \rightarrow A' + ..$
- DP: meson-mediated production  $p + N \rightarrow P(V) + ..; P \rightarrow A'\gamma \ (P = \{\pi^0, \eta, \eta'\}), V \rightarrow A'P \ (V = \{\rho, \omega, \phi\})$
- ALP/DS: B-meson-mediated production:  $B^{\pm,0} \to K^{\pm,0,(\star)}X$

EL OQO

### Search for LLP decay to $\ell^+\ell^-$ in beam-dump mode (strategy)

An LLP X with  $\ell^+\ell^-$  decay can be e.g. a DP, DS or ALP  $\Rightarrow$  6 combinations of production and decay channels ( $e^+e^-, \mu^+\mu^-$ ) considered:

- DP: *p*-Bremsstrahlung production  $p + N \rightarrow A' + ..$
- DP: meson-mediated production  $p + N \rightarrow P(V) + ..; P \rightarrow A'\gamma \ (P = \{\pi^0, \eta, \eta'\}), V \rightarrow A'P \ (V = \{\rho, \omega, \phi\})$
- ALP/DS: B-meson-mediated production:  $B^{\pm,0} \to K^{\pm,0,(\star)}X$

Search strategy:

- selecting  $\ell^+\ell^-$  tracks;
- $\ell^+\ell^-$  vertex reconstructed in FV  $\Rightarrow$  reconstruction of  $p_X$  and  $m_X$ ;
- search for primary production vertex close to TAX (where you expect LLP to be produced);
- blind analysis (signal and control regions defined around primary vertex location kept masked).

Event selection:

- good quality tracks with timing in coincidence with each other and the trigger
- particle ID with LKr  $E_{\rm LKr}/p \sim 0 + MUV3$  for  $\mu^{\pm}$ and  $E_{\rm LKr}/p \sim 1 + !MUV3$  for  $e^{\pm}$
- no in-time activity in LAV (and ANTI0 for e)
- extrapolation of di-lepton momentum to TAX: definition of signal region (SR) in terms of primary vertex location CDA<sub>TAX</sub> and z<sub>TAX</sub>
  - $\mu\mu$ : SR is a box 6 <  $z_{\text{TAX}}$  < 40 m and CDA<sub>TAX</sub> < 20 mm;
  - *ee*: SR is an ellipse centered at  $z_{\text{TAX}} = 23$  m and CDA<sub>TAX</sub> = 0;



# Search for LLP decay to $\mu^+\mu^-$ in beam-dump mode (acceptance)

Meson-mediated production:

**Bremsstrahlung** production:



# Search for LLP decay to $e^+e^-$ in beam-dump mode (acceptance)

Meson-mediated production:

Bremsstrahlung production:



 $\Delta T$  of the tracks suggests two types of background mechanisms:

#### ${\bf Combinatorial:}$

- Background from random superposition of two uncorrelated upstream particles;
- Dominating for  $\mu^+\mu^-$

#### **Prompt:**

- Background from secondaries of μ interactions with the traversed material (hadron photo-production);
- Dominating for *ee*.



Figure:  $X \to \ell^+ \ell^-$  background before LAV veto (SR and CR masked).

#### Combinatorial background:

- selected single tracks in a data sample orthogonal to the one used for the analysis;
- track pairs are artificially built to emulate a random superposition;
- each track pair weighted to account for the 10 ns time window → independent on the intensity;
- powerful statistical accuracy from combinatorial enhancement;

#### Combinatorial background:

- selected single tracks in a data sample orthogonal to the one used for the analysis;
- track pairs are artificially built to emulate a random superposition;
- each track pair weighted to account for the 10 ns time window → independent on the intensity;
- powerful statistical accuracy from combinatorial enhancement;

#### Prompt background:

- muon kinematic distributions extracted from selected single muons in data (backwards MC);
- to correct the spread induced by the backward-forward process (straggling, MS), an unfolding technique is applied to better reproduce the data distributions;
- relative uncertainty of MC expectation  $\sim 50\%$ .

E SQQ



| after LAV veto          | $N_{\rm exp}\pm\delta N_{\rm exp}$ | $N_{\rm obs}$ | $p_{L\leq L_{\rm obs}}$ |
|-------------------------|------------------------------------|---------------|-------------------------|
| $\mu^+\mu^-$ outside CR | $26.3\pm3.4$                       | 28            | 0.74                    |
| $\mu^+\mu^-$ OCR3       | $1.70\pm0.22$                      | 2             | 0.25                    |
| $\mu^+\mu^-$ OCR2       | $0.58\pm0.07$                      | 1             | 0.44                    |
| $\mu^+\mu^-$ OCR1       | $0.29\pm0.04$                      | 1             | 0.68                    |

• 
$$N_{\text{exp,bkg}}^{\text{CR}}(\mu^+\mu^-) = 0.17 \pm 0.02 \ 90\% \text{CL}$$

•  $N_{\text{exp,bkg}}^{\text{SR}}(\mu^+\mu^-) = 0.016 \pm 0.002 \ 90\% \text{CL}$ 

| before LAV, ANTI0 veto | $N_{\rm exp}\pm\delta N_{\rm exp}$ | $N_{\rm obs}$ | $p_{L\leq L_{\rm obs}}$ |
|------------------------|------------------------------------|---------------|-------------------------|
| $e^+e^-$ PID, OCR      | $58.9\pm30.2$                      | 81            | 0.50                    |

• 
$$N_{\text{exp,bkg}}^{\text{CR}}(e^+e^-) = 0.0097^{+0.049}_{-0.009}$$
 90%CL

• 
$$N_{\text{exp,bkg}}^{\text{SR}}(e^+e^-) = 0.0094^{+0.049}_{-0.009}$$
 90%CL

17 / 31

LPHE seminar, April 22, 2024





Jan Jerhot (MPP)

HNL and LLP at NA62 beam dump

#### Search for LLP decay to $\mu^+\mu^-$ in beam-dump mode (result)

Interpretation of  $A' \to \mu \mu$  analysis as a search for ALP/scalar *a* produced in  $B \to K^{(\star)}a$  decay:



Figure: Resulting exclusion @90% CL for (pseudo)scalar a with mass  $M_a$  and lifetime  $\tau_a$ .

#### Search for LLP decay to $e^+e^-$ in beam-dump mode (result)

Interpretation of  $A' \to ee$  analysis as a search for ALP/scalar *a* produced in  $B \to K^{(\star)}a$  decay:



Figure: Resulting exclusion @90% CL for (pseudo)scalar a with mass  $M_a$  and lifetime  $\tau_a$ .

# Search for LLP decay to hadrons in beam-dump mode (strategy)

• Numerous possibilities for LLP X being a dark photon (DP), dark scalar (DS), axion-like particle (ALP), ..

# Search for LLP decay to hadrons in beam-dump mode (strategy)

- Numerous possibilities for LLP X being a dark photon (DP), dark scalar (DS), axion-like particle (ALP), ..
- $\Rightarrow$  numerous production and decay channels:

| DP                     | DS                     | ALP                    |
|------------------------|------------------------|------------------------|
| $\pi^+\pi^-$           | $\pi^+\pi^-$           | $\pi^+\pi^-\gamma$     |
| $\pi^+\pi^-\pi^0$      |                        | $\pi^+\pi^-\pi^0$      |
| $\pi^+\pi^-\pi^0\pi^0$ | $\pi^+\pi^-\pi^0\pi^0$ | $\pi^+\pi^-\pi^0\pi^0$ |
|                        |                        | $\pi^+\pi^-\eta$       |
| $K^+K^-$               | $K^+K^-$               |                        |
| $K^+K^-\pi^0$          |                        | $K^+K^-\pi^0$          |

- ALP: Primakoff (on-, off-shell), mixing with  $P = \{\pi^0, \eta, \eta'\}, B^{\pm,0} \to K^{\pm,0,(\star)}a$
- DP: Bremsstrahlung,  $P \to A'\gamma, V \to A'P$  $(V = \{\rho, \omega, \phi\})$
- DS:  $B^{\pm,0} \to K^{\pm,0,(\star)}S$
- Altogether 36 combinations of production and decay channels studied

E SQC

# Search for LLP decay to hadrons in beam-dump mode (selection)

#### 2 hadronic track selection:

- 2 good quality tracks in coincidence with each other and the trigger
- BDT particle ID selecting hadrons (calo. and MUV3), RICH used for tagging K
- no in-time activity in LAV, SAV and ANTIO
- decay vertex reconstructed in FV;

# Search for LLP decay to hadrons in beam-dump mode (selection)

#### 2 hadronic track selection:

- 2 good quality tracks in coincidence with each other and the trigger
- BDT particle ID selecting hadrons (calo. and MUV3), RICH used for tagging K
- no in-time activity in LAV, SAV and ANTIO
- decay vertex reconstructed in FV;

#### Search strategy:

- search neutral LKr clusters and reconstruction of  $\gamma$ ,  $\pi^0$ ,  $\eta$  based on time and opening angle;
- LLP p reconstructed from final states and extrapolation to TAX



Figure:  $A' \to \pi^+\pi^-$  signal MC and definition of control (CR, red) and signal regions (SR, blue).

- SR: ellipse centered at  $\{Z_{TAX}, CDA_{TAX}\} = \{23 \text{ m}, 0 \text{ mm}\}$ with semi-axes of 23 m and 40 mm
- CR: CDA<sub>TAX</sub> < 150 mm and  $-7 \text{ m} < Z_{TAX} < 53 \text{ m}$

#### Search for LLP decay to hadrons in beam-dump mode (acceptance)

- In model-independent case  $X \to \pi^+ \pi^-$ (BR<sub>X $\to\pi^+\pi^-$ </sub> = 1):  $N_{\exp}(M_X, \Gamma_X) =$  $N_{\text{POT}} \times \chi_{pp \to X}(C_{\text{ref}}) \times P_{\text{rd}} \times A_{\text{acc}} \times A_{\text{trig}}$
- $\chi_{pp \to X}(C_{ref})$ : LLP prod. probability for ref. coupling
- $P_{\rm rd}$ : probability to reach NA62 FV and decay therein
- $A_{\rm acc} \times A_{\rm trig}$ : signal selection and trigger efficiencies



Figure: Left: expected  $S \to \pi^+ \pi^-$  yield after full selection, assuming  $g_{bs} = 10^{-4}$  and BR = 1. Center: acceptance after full selection for LLPs that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

• Distributions above obtained for all 36 combinations of production and decay channels.

After masking SR and CR and lifting vetoes, two  $\pi\pi$  events observed in data:

- 1 event with vertex upstream of FV, vetoed by ANTI0
- 1 event with vertex inside FV, not vetoed by ANTIO, vetoed by LAV

Background estimations with MC:

- combinatorial and neutrino-induced backgrounds: negligible contributions
- prompt background: inelastic interaction of halo muons can produce hadrons
- upstream background: formed by particles that are collected by the GTK achromat

- estimation using data-driven backward MC with measured  $\mu$  halo + unfolding for correct kinematics
- MC stat. equivalent of  $N_{\rm POT} = 1.53 \times 10^{17}$  (exceeding the data stat.)
- $\pi\pi$  outside CR (in ANTI0 acceptance + no vetoes applied):
  - $N_{\text{exp}} = 1.8 \pm 1.4 \text{ vs } N_{\text{obs}} = 1$ (Upstream region)
  - $N_{\text{exp}} = 0.20 \pm 0.15 \text{ vs } N_{\text{obs}} = 1$  (FV)

ELE NOR

- estimation using data-driven backward MC with measured  $\mu$  halo + unfolding for correct kinematics
- MC stat. equivalent of  $N_{\rm POT} = 1.53 \times 10^{17}$  (exceeding the data stat.)
- $\pi\pi$  outside CR (in ANTI0 acceptance + no vetoes applied):
  - $N_{\text{exp}} = 1.8 \pm 1.4 \text{ vs } N_{\text{obs}} = 1$ (Upstream region)
  - $N_{\text{exp}} = 0.20 \pm 0.15 \text{ vs } N_{\text{obs}} = 1$  (FV)
- after applying full selection the prompt background expectations in CR and SR are below  $10^{-4}$  in all channels

Table: Summary of expected number of prompt background events at 68% CL for all studied decay channels in CR and SR after full selection.

| Channel                | $N_{ m exp,CR} \pm \delta N_{ m exp,CR}$ | $N_{ m exp,SR} \pm \delta N_{ m exp,SR}$ |
|------------------------|------------------------------------------|------------------------------------------|
| $\pi^+\pi^-$           | $(5.7^{+18.5}_{-4.7}) \times 10^{-5}$    | $(5.5^{+18.0}_{-4.5}) \times 10^{-5}$    |
| $\pi^+\pi^-\gamma$     | $(1.7^{+5.3}_{-1.4}) \times 10^{-5}$     | $(1.6^{+5.2}_{-1.3}) \times 10^{-5}$     |
| $\pi^+\pi^-\pi^0$      | $(1.3^{+4.4}_{-1.0}) \times 10^{-7}$     | $(1.2^{+4.3}_{-1.0}) \times 10^{-7}$     |
| $\pi^+\pi^-\pi^0\pi^0$ | $(1.6^{+7.6}_{-1.4}) \times 10^{-8}$     | $(1.6^{+7.4}_{-1.4}) \times 10^{-8}$     |
| $\pi^+\pi^-\eta$       | $(7.3^{+27.0}_{-6.1}) \times 10^{-8}$    | $(7.0^{+26.2}_{-5.8}) \times 10^{-8}$    |
| $K^+K^-$               | $(4.7^{+15.7}_{-3.9}) \times 10^{-7}$    | $(4.6^{+15.2}_{-3.8}) \times 10^{-7}$    |
| $K^+K^-\pi^0$          | $(1.6^{+3.2}_{-1.2}) \times 10^{-9}$     | $(1.5^{+3.1}_{-1.2}) \times 10^{-9}$     |

- 3 upstream background subcomponents observed in the control sample in the  $Z_{\text{VTX}} - m_{\pi\pi}$  plane:
  - 19 upstream interactions
  - 2  $K_S \to \pi^+ \pi^-$  candidates
  - 8  $K^+ \to \pi^+ \pi^+ \pi^-$ (6 identified as  $\pi^+ \pi^-$ , 2  $\pi^+ \pi^- \gamma$ )



Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in  $Z_{\rm VTX}$  – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the  $K_S$   $3\sigma$  mass window.
- 3 upstream background subcomponents observed in the control sample in the  $Z_{\text{VTX}} - m_{\pi\pi}$  plane:
  - 19 upstream interactions
  - 2  $K_S \to \pi^+ \pi^-$  candidates
  - 8  $K^+ \to \pi^+ \pi^+ \pi^-$ (6 identified as  $\pi^+ \pi^-$ , 2  $\pi^+ \pi^- \gamma$ )
- upstream interactions vetoed by ANTI0 acceptance and vertex location



Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in  $Z_{\rm VTX}$  – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the  $K_S$   $3\sigma$  mass window.

- 3 upstream background subcomponents observed in the control sample in the  $Z_{\text{VTX}} - m_{\pi\pi}$  plane:
  - 19 upstream interactions
  - 2  $K_S \to \pi^+ \pi^-$  candidates
  - 8  $K^+ \to \pi^+ \pi^+ \pi^-$ (6 identified as  $\pi^+ \pi^-$ , 2  $\pi^+ \pi^- \gamma$ )
- upstream interactions vetoed by ANTI0 acceptance and vertex location
- for  $K_S \ 3\sigma$  window (±5.7 MeV/ $c^2$ ) around  $m_{K_S}$  kept masked



Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in  $Z_{\rm VTX}$  – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the  $K_S$   $3\sigma$  mass window.

- 3 upstream background subcomponents observed in the control sample in the  $Z_{\text{VTX}} - m_{\pi\pi}$  plane:
  - 19 upstream interactions
  - 2  $K_S \to \pi^+ \pi^-$  candidates
  - 8  $K^+ \to \pi^+ \pi^+ \pi^-$ (6 identified as  $\pi^+ \pi^-$ , 2  $\pi^+ \pi^- \gamma$ )
- upstream interactions vetoed by ANTI0 acceptance and vertex location
- for  $K_S \ 3\sigma$  window (±5.7 MeV/ $c^2$ ) around  $m_{K_S}$  kept masked
- $K^+$ -induced background simulated using selected single track  $K^+$  forced to decay as  $K \to \pi^+ \pi^+ \pi^-$  in the FV



Figure: Events not in ANTI0 acceptance or not vetoed by ANTI0 in  $Z_{\rm VTX}$  – invariant mass plane. Solid lines indicate the FV. Dashed lines indicate the  $K_S$   $3\sigma$  mass window.

• Result outside CR/SR before ANTI0 acceptance:

| Channel            | $N_{\rm exp}\pm\delta N_{\rm exp}$ | $N_{ m obs}$ |
|--------------------|------------------------------------|--------------|
| $\pi^+\pi^-$       | $5.6 \pm 2.8$                      | 6            |
| $\pi^+\pi^-\gamma$ | $2.4 \pm 1.2$                      | 2            |

• Result outside CR/SR after ANTI0 acceptance:

| Channel            | $N_{ m exp} \pm \delta N_{ m exp}$ | $N_{\rm obs}$ |
|--------------------|------------------------------------|---------------|
| $\pi^+\pi^-$       | $0.68\pm0.34$                      | 1             |
| $\pi^+\pi^-\gamma$ | $0.31\pm0.16$                      | 0             |

• Background expectation in SR and CR:

| Channel            | $N_{ m exp,CR} \pm \delta N_{ m exp,CR}$ | $N_{\rm exp,SR}\pm\delta N_{\rm exp,SR}$ |
|--------------------|------------------------------------------|------------------------------------------|
| $\pi^+\pi^-$       | $0.013 \pm 0.007$                        | $0.007\pm0.005$                          |
| $\pi^+\pi^-\gamma$ | $0.031\pm0.016$                          | $0.007\pm0.004$                          |



Figure: Obtained background distribution from  $K_{3\pi}$  in the primary vertex Z and CDA plane before applying ANTIO acceptance.

• Simulation performed also for  $K_{e4}$  and  $K_{\mu4}$  decays  $\Rightarrow$  negligible contributions

Table: Summary of total expected number of background events at 68% CL for all studied decay channels in CR and SR after full selection. Needed number of observed events  $N_{\rm obs}$  for *p*-value more than  $5\sigma$  from background-only hypothesis in SR and SR+CR (global significance, flat background in  $m_{\rm inv}$  assumption).

| Channel                | $N_{\mathrm{exp,CR}} \pm \delta N_{\mathrm{exp,CR}}$ | $N_{\mathrm{exp,SR}} \pm \delta N_{\mathrm{exp,SR}}$ | $N_{ m obs,SR}^{p>5\sigma}$ | $N_{ m obs,SR+CR}^{p>5\sigma}$ |
|------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------|--------------------------------|
| $\pi^+\pi^-$           | $0.013 \pm 0.007$                                    | $0.007 \pm 0.005$                                    | 3                           | 4                              |
| $\pi^+\pi^-\gamma$     | $0.031\pm0.016$                                      | $0.007 \pm 0.004$                                    | 3                           | 5                              |
| $\pi^+\pi^-\pi^0$      | $(1.3^{+4.4}_{-1.0}) \times 10^{-7}$                 | $(1.2^{+4.3}_{-1.0}) \times 10^{-7}$                 | 1                           | 1                              |
| $\pi^+\pi^-\pi^0\pi^0$ | $(1.6^{+7.6}_{-1.4}) \times 10^{-8}$                 | $(1.6^{+7.4}_{-1.4}) \times 10^{-8}$                 | 1                           | 1                              |
| $\pi^+\pi^-\eta$       | $(7.3^{+27.0}_{-6.1}) \times 10^{-8}$                | $(7.0^{+26.2}_{-5.8}) \times 10^{-8}$                | 1                           | 1                              |
| $K^+K^-$               | $(4.7^{+15.7}_{-3.9}) \times 10^{-7}$                | $(4.6^{+15.2}_{-3.8}) \times 10^{-7}$                | 1                           | 2                              |
| $K^+K^-\pi^0$          | $(1.6^{+3.2}_{-1.2}) \times 10^{-9}$                 | $(1.5^{+3.1}_{-1.2}) \times 10^{-9}$                 | 1                           | 1                              |

• background-free hypothesis **not only** at  $N_{\text{POT}} = 1.4 \times 10^{17}$ but also in the future full Run 2 dataset of  $N_{\text{POT}} = 10^{18}$ 

== ~~~~

## Search for LLP decay to hadrons in beam-dump mode (result)

0 events observed in all control and signal regions



Figure: The observed 90% CL exclusion contours in BC4 (left) and BC11 (right) benchmarks together with the expected  $\pm 1\sigma$  and  $\pm 2\sigma$  bands (theory uncertainty not included). Public tool ALPINIST used for the combination of the results from the individual production and decay channels.<sup>5</sup> No standalone 90% CL exclusion for BC1 (dark photon).

Jan Jerhot (MPP)

<sup>&</sup>lt;sup>5</sup>ALPINIST: Axion-Like Particles In Numerous Interactions Simulated and Tabulated. JHEP 07 (2022) 0945 [2201.05170] ]

#### Future prospects

- Data-taking ongoing, new BD sample collected in 2023,  $10^{18}$  POT in beam-dump mode expected by the LHC LS3  $\Rightarrow$  improvement in all channels shown before;
- Searches for LLPs decaying into semi-leptonic or di-gamma final states are in progress  $\Rightarrow$  interesting perspectives on ALPs and HNLs ( $\gamma\gamma$  sensitivity estimated with a toy MC):



## Summary

- NA62 is a multipurpose experiment allowing search for LLP in beam-dump mode and in kaon decays;
- Searches for LLP in  $K^+ \to \pi^+$ ,  $K^+ \to \mu^+$  and  $K^+ \to e^+$  decays using 2016-2018 dataset were presented;
- Blind analyses to search for LLP decays  $X \to \ell^+ \ell^-$  and  $X \to$  hadrons have been performed on the data collected in 2021;
- New regions of LLP parametric spaces were probed with no NP signal observed;
- Several new searches for LLPs in kaon decays and semi-leptonic or di-gamma final state decays in beam-dump mode are in progress.

313 900

## Summary

- NA62 is a multipurpose experiment allowing search for LLP in beam-dump mode and in kaon decays;
- Searches for LLP in  $K^+ \to \pi^+$ ,  $K^+ \to \mu^+$  and  $K^+ \to e^+$  decays using 2016-2018 dataset were presented;
- Blind analyses to search for LLP decays  $X \to \ell^+ \ell^-$  and  $X \to$  hadrons have been performed on the data collected in 2021;
- New regions of LLP parametric spaces were probed with no NP signal observed;
- Several new searches for LLPs in kaon decays and semi-leptonic or di-gamma final state decays in beam-dump mode are in progress.

## Thank you for your attention!

ELE NOR

# Backup slides

Jan Jerhot (MPP)

HNL and LLP at NA62 beam dump

LPHE seminar, April 22, 2024

E ► < E ► E E • 9 < @

## Search for $A' \to \mu \mu$ - details on observed event



Jan Jerhot (MPP)

HNL and LLP at NA62 beam dump

LPHE seminar, April 22, 2024 1 / backup

#### MC: DP (Brems) $\rightarrow \pi^+\pi^-$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 2 / backup

#### MC: DP (Brems) $\rightarrow 3\pi$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 3 / backup

#### MC: DP (Brems) $\rightarrow 4\pi$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 4 / backup

## MC: DP (Brems) $\rightarrow K^+ K^{-1}$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 5 / backup

## MC: DP (Brems) $\rightarrow K^+ K^- \pi^0$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 6 / backup

## MC: DP (Meson decay) $\rightarrow \pi^+\pi^-$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 7 / backup

#### MC: DP (Meson decay) $\rightarrow 3\pi$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 8 / backup

#### MC: DP (Meson decay) $\rightarrow 4\pi$



Figure: Left: expected yield after full selection, assuming  $\epsilon = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 9 / backup

## MC: DS (B meson decay) $\rightarrow \pi^+\pi^-$



Figure: Left: expected yield after full selection, assuming  $g_{bs} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 10 / backup

#### MC: DS (B meson decay) $\rightarrow 4\pi$



Figure: Left: expected yield after full selection, assuming  $g_{bs} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 11 / backup

## MC: DS (B meson decay) $\rightarrow K^+K^-$



Figure: Left: expected yield after full selection, assuming  $g_{bs} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 12 / backup

## MC: ALP (Primakoff) $\rightarrow \pi^+\pi^-\gamma$



Figure: Left: expected yield after full selection, assuming  $C_{\gamma\gamma}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 13 / backup

#### MC: ALP (Primakoff) $\rightarrow 3\pi$



Figure: Left: expected yield after full selection, assuming  $C_{\gamma\gamma}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 14 / backup

#### MC: ALP (Primakoff) $\rightarrow 4\pi$



Figure: Left: expected yield after full selection, assuming  $C_{\gamma\gamma}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 15 / backup

## MC: ALP (Primakoff) $\rightarrow \pi^+\pi^-\eta$



Figure: Left: expected yield after full selection, assuming  $C_{\gamma\gamma}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 16 / backup

#### MC: ALP (Primakoff) $\rightarrow K^+ K^- \pi^0$



Figure: Left: expected yield after full selection, assuming  $C_{\gamma\gamma}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 17 / backup

## MC: ALP (B meson decay) $\rightarrow \pi^+\pi^-\gamma$



Figure: Left: expected yield after full selection, assuming  $C_{bs}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 18 / backup

#### MC: ALP (B meson decay) $\rightarrow 3\pi$



Figure: Left: expected yield after full selection, assuming  $C_{bs}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 19 / backup

#### MC: ALP (B meson decay) $\rightarrow 4\pi$



Figure: Left: expected yield after full selection, assuming  $C_{bs}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 20 / backup

#### MC: ALP (B meson decay) $\rightarrow \pi^+\pi^-\eta$



Figure: Left: expected yield after full selection, assuming  $C_{bs}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 21 / backup

## MC: ALP (B meson decay) $\rightarrow K^+ K^- \pi^{0}$



Figure: Left: expected yield after full selection, assuming  $C_{bs}/\Lambda = 10^{-4} \text{ GeV}^{-1}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 22 / backup

# MC: ALP $(\pi^0 \text{ mixing}) \rightarrow \pi^+ \pi^- \gamma$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\pi^0} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 23 / backup

# MC: ALP $(\pi^0 \text{ mixing}) \to 3\pi$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\pi^0} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 24 / backup

## MC: ALP $(\pi^0 \text{ mixing}) \to 4\pi$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\pi^0} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 25 / backup

# MC: ALP $(\pi^0 \text{ mixing}) \rightarrow \pi^+ \pi^- \eta$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\pi^0} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 26 / backup
## MC: ALP $(\pi^0 \text{ mixing}) \to K^+ K^- \pi^0$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\pi^0} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 27 / backup

# MC: ALP $(\eta \text{ mixing}) \rightarrow \pi^+ \pi^- \gamma$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 28 / backup

### MC: ALP $(\eta \text{ mixing}) \rightarrow 3\pi$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 29 / backup

### MC: ALP $(\eta \text{ mixing}) \rightarrow 4\pi$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 30 / backup

# MC: ALP $(\eta \text{ mixing}) \rightarrow \pi^+ \pi^- \eta$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 31 / backup

# MC: ALP $(\eta \text{ mixing}) \to K^+ K^- \pi^0$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 32 / backup

# MC: ALP $(\eta' \text{ mixing}) \rightarrow \pi^+ \pi^- \gamma$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta'} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 33 / backup

### MC: ALP $(\eta' \text{ mixing}) \to 3\pi$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta'} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 34 / backup

### MC: ALP $(\eta' \text{ mixing}) \to 4\pi$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta'} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 35 / backup

## MC: ALP $(\eta' \text{ mixing}) \rightarrow \pi^+ \pi^- \eta$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta'} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 36 / backup

## MC: ALP $(\eta' \text{ mixing}) \to K^+ K^- \pi^{0'}$



Figure: Left: expected yield after full selection, assuming  $\theta_{a\eta'} = 10^{-4}$  and BR = 1. Center: acceptance for events that reached the FV and decayed therein. Right: Mass resolution of the reconstructed LLP.

LPHE seminar, April 22, 2024 37 / backup