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Strongly coupled dynamics: outlook

@ Important physical examples of gauge fields are realised
in Nature (QCD and electroweak interactions)

@ Non-perturbative QCD phenomena are far from being understood
(e.g. quark confinement, mass gap, QCD phase transitions,
hot/dense QCD phenomena etc)

@ Non-abelian gauge (Yang-Mills) fields are present in most of UV completions
of the Standard Model (e.g. GUTs, string/EDs compactifications etc)

@ Confining dark Yang-Mills sectors are often considered as a possible
source of Dark Matter in the Universe (e.g. dark glueballs)

@ Pure gluons
= confinement-deconfinement phase transition

@ Gluons + fermions

e Fermions in fundamental representation = chiral phase transition
@ Fermions in adjoint rep. = confinement & chiral phase transition
e Fermions in 2-index symmetric rep. = confinement & chiral phase transition

@ Gluons + fermions + scalars
—> not explored yet



Hidden confining (pure) gauge sectors

Many works on confining dark SU(N)

» Self-interacting DM
E. D. Carlson et al., Astrophys. J. 398 (1992), 43-52

» Glueball phenomenology
A. Soni and Y. Zhang, Phys. Rev. D 93 (2016) no.11, 115025

» The dark glueball problem
J. Halverson et al., Phys. Rev. D 95 (2017) no.4, 043527

» The nightmare scenario
R. Garani et al., JHEP 12 (2021), 139

» Thermal Squeezeout
P. Asadi et al.,, Phys. Rev. D 104 (2021) no.9, 095013

» Gravitational waves from confinement
W. C. Huang et al., Phys. Rev. D 104 (2021) no.3, 035005

Do we need to describe the cosmological evolution of the dark
gluon gas?

Open questions remain: How do glueball form from dark gluons?

Is there any constraint on glueball self-interactions?

Is there a reliable estimate of the glueball relic density?



How do we describe strongly coupled sectors at finite T?

@ Pure gluons

= Polyakov loop model

= Matrix model

= Holographic QCD model

@ Gluons + fermions

Kang, Zhu, Matsuzaki, JHEP 09 (2021) 060;
Huang, Reichert, Sannino, Wang, PRD 104 (2021) 035005

Halverson, Long, Maiti, Nelson, Salinas, JHEP 05 (2021) 154

Ares, Henriksson, Hindmarsh, Hoyos, Jokela, PRD 105 (2022)
066020; PRL 128 (2022) 131101

= Polyakov loop improved Nambu-Jona-Lasinio model

= Linear sigma model

= Polyakov Quark Meson model

Reichert, Sannino, Wang, Zhang, JHEP 01 (2022) 003;
Helmboldt, Kubo, Woude, PRD 100 (2019) 055025

Helmboldt, Kubo, Woude, PRD 100 (2019) 055025

RP, Reichert, Sannino, Wang, JHEP 02 (2024) 159



Polyakov Loop Model for pure gluons |

Pisarski first proposed the Polyakov-loop Model as an effective field
theory to describe the confinement-deconfinement phase transition of
SU(N) gauge theory (Pisarski, PRD 62 (2000) 111501).

In a local SU(N) gauge theory, a global center symmetry Z(/V) is used to
distinguish confinement phase (unbroken phase) and deconfinement
phase (broken phase)

An order parameter for the Z(N) symmetry is constructed using the
Polyakov Loop (thermal Wilson line) (Polyakov, PLB 72 (1978) 477)

/T
L(Z) = Pexp z/ Ayg(Z,7)dr
0

The symbol P denotes path ordering and A, is the Euclidean temporal
component of the gauge field

The Polyakov Loop transforms like an adjoint field under local SU(N)
gauge transformations



Polyakov Loop Model for pure gluons Il

Convenient to define the trace of the Polyakov loop as an order
parameter for the Z(IN) symmetry
1

l (f) — NTIC[L] ;

where Tr. denotes the trace in the colour space.

Under a global Z (V) transformation, the Polyakov loop ¢ transforms as a
field with charge one

| 2
(e, = 7”

3 ]:Oalaa(N_l)
The expectation value of 7 i.e. < ¢ > has the important property:
() =0 (T < T, Confined); (¢) >0 (T > T, Deconfined)

At very high temperature, the vacua exhibit a N —fold degeneracy:
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where ¢, is defined to be real and ¢y — 1 as T' — oo



Effective PLM potential

e The simplest effective potential preserving the Z symmetry in the
polynomial form is given by (Pisarski, PRD 62 (2000) 111501)

b2(T')
2

T, To\° o \° o \*
where bQ(T):ao+a1<79> | a2<TO> +a3<%> +a4<%>

“..." represent any required lower dimension operator than ¢% i.e.
(00%)* = |¢|?*with 2k < N.
® Forthe SU(3) case, there is also an alternative logarithmic form

Vi =1 (— 02+ bal)t + - — b (Y + W))

2

a(T) = ao + ay (%) + as (%)z + as (%)3 b(T) = by (%)3

o The qa;, b; coefficients in VFEFL",f,'ly) and VP(E,'\;’Q) are determined by fitting the
lattice results

o T
yi2los) — p <_ a(T) €2+ b(T) In(1 — 6]¢|* + 4(£*3 4 £3) — 3\@\4))



Fitting the PLM potential to the lattice data

Lattice data
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PLM potential and Polyakov loop VEV in SU(N)

P. M. Lo et al., Phys. Rev. D 88 (2013), 074502
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Dark gluon-glueball dynamics

Carenza, RP, Salinas, Wang, Phys. Rev. Lett. 129 (2022) no.26, 26

In the literature, for glueball dark matter production, only ¢° interaction is

Q
considered, making the 3 — 2 annihilation the only relevant process for
DM formation

o However, since glueball is strongly coupled, this naive calculation is not

rigorous. A non-perturbative method is required.

o TIhe dark gluon-glueball dynamics can be effectively described by
considering the dimension-4 glueball field H o tr(G**G,.0):

<H> N =2 Ea'u?_[a,u% B

0.8 N L =
06| second-order
phase transition
04 H
V [7’[, g] — E In

0o confined phase

<l>

0.98 0.99 1 1.01 1.02 1.03 1.04

VIO =5

] + TV [€] + HP[E) + Vr [H]

We keep the lowest order in P[/] Pl = c1]4)?

T/Tc where c¢; is determined by the lattice results (jumping of gluon

condensate).

F. Sannino, Polyakov loops versus hadronic states, Phys.
Rev. D 66 (2002) 034013 [hep-ph/0204174].



Thermal evolution of the glueball-dark gluon system
Carenza, RP, Salinas, Wang, Phys. Rev. Lett. 129 (2022) no.26, 26

@ Introducing canonically normalised field H = 2 %¢%¢*
the effective Lagrangian reads:

@ Fits to lattice results for observables

L= 58,00"0— V[o.0],

provide:
V ¢4 21 ¢ 4In2 —1
[qbv ] 2862 1 A —a4nz—Inc| + ao a1 a9 as a4 b3 b4
¢4 3.721—5.7318.491—-9.29(0.2712.40|4.53
+ P+ TV, _ _
2°c Huang, Reichert, Sannino and Wang,
Pl = c1 ||, PRD 104 (2021) 035005

vl = =20 02 et ol + (1)),

T.\" 1.0 — 1=1.12
bo(T) =) ay (?> , //\ FOPT . T

- - (1=
=0 0-81 SU(3) 1
@ Integrating out the Polyakov loop in < 0.6
the high-T phase provides §
v 0.4
Ve, T) = Vg, £(¢,T)
C2F

matching the size of discontinuity to lattice:

C1 1 225 :I: 0.19 at 95% CL
M. D’Elia, A. Di Giacomo and E. Meggiolaro, Gauge 0.0
invariant field strength correlators in pure Yang-Mills 0.6 0.8 1.0 1.2 1.4 ]_ o 1. 8 2.0
and full QCD at finite temperature, Phys. Rev. D 67
(2003) 114504 [hep-lat/0205018]. T/T. 11




Thermal potential and glueball mass

Carenza, RP, Salinas, Wang, Phys. Rev. Lett. 129 (2022) no.26, 26
Carenza, Ferreira, RP and Wang, Phys. Rev. D 108 (2023) no.12, 12
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Cosmological evolution of the dark glueball field

Carenza, RP, Salinas, Wang, Phys. Rev. Lett. 129 (2022) no.26, 26
Carenza, Ferreira, RP and Wang, Phys. Rev. D 108 (2023) no.12, 12

® The glueball field is considered homogeneous and evolves in expanding
FLRW universe, with the E.O.M.

¢+ 3Hd+ gV, T] =0

® The time variable is found in terms of the photon temperature:

1 45 mp
2\/47739*,/0(Tv) T v =T

where & denotes the visible-to-dark sector temperature ratio and
mp = 1.22 x 10'” GeV is the Planck mass and g, , is the number of
energy-related degrees of freedom.

® E.O.M. in terms of the dark sector temperature:

43 g*p€4 6d2gb 213 dg, do
45m3, aT? 45m?2, dT dT

encodes non-perturbative dynamics of the glueball field at finite T 13

s 0 STTG

+ 8¢V[¢ T =0
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Cosmological evolution of the dark glueball field

Carenza, RP, Salinas, Wang, Phys. Rev. Lett. 129 (2022) no.26, 26
Carenza, Ferreira, RP and Wang, Phys. Rev. D 108 (2023) no.12, 12
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@ Field starts to oscillate around the minimum of the potential when
H >~ mg, with temperature Tosc ~ vV MA

o Inearly times in deconfined regime, for different initial conditions the field
evolution follows the minimum (red dashed line).

@ First order phase transition washes out any dependence on initial

conditions.
14



Glueball relic density

Carenza, RP, Salinas, Wang, Phys. Rev. Lett. 129 (2022) no.26, 26
Carenza, Ferreira, RP and Wang, Phys. Rev. D 108 (2023) no.12, 12

Energy stored in these oscillations around ¢..;, ~ 0.28A is the relic DM
abundance, Qh? = p/p. (critical density p. = 1.05 x 10*eV cm™°)

277 TS [ dp\?
p= 2 0nDp (52) + Vi)

Then the relic density today is calculated:

A F; Too \° . A
QB2 = N 3 =2 = 0.12¢(7° —
pe/h? <T3>f d <CTTf) T Ao

with dilution factor (7’,.0/{rTy)> to consider the Universe expansion
Below freeze-out temperature, the predicted glueball relic density is
A
0.12
r 137.9eV ~

for (' = 0.1, the glueball dark matter mass is ~ 100MeV
It is more than a factor of 10 difference compared to the old calculations

A
Qh? ~ 0.12¢3
Cr 5.45

A
< QR? <0.12¢,° ooy 1035 < <1415

eV
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N and initial conditions dependence
Carenza, Ferreira, RP and Wang, Phys. Rev. D 108 (2023) no.12, 12
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Glueball DM parameter space

Carenza, Ferreira, RP and Wang, Phys. Rev. D 108 (2023) no.12, 12
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A large portion of the parameter space is viable .



Including fermions: the PQM model

B. Schaefer, J. Pawlowski, . Wambach PRD 76 (2007) 074023
B. Schaefer, M. Wagner, PPNP 62 (2009) 391
RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159

The Polyakov quark meson model (PQM) is widely used as an effective
theory to study the first order chiral phase transition

The Lagrangian of the PLSM where mesons couple to a spatially
constant temporal background gauge field reads

. . a 1 1
L=G(iP—g(o+irTT)) g+ = (0,0)° + 5 (9u7a)

2 2
ol .
- VPSII)JMY) + VLSM - Vmedium 7Where E — ’)/,uau — Z’}/()AO

Vism under symmetry SU(Ny) x SU(Ny) with N flavours reads

Vism = % (Ao — Aa) Tr[@T®]” + %AaTr TPDTD] — m*Tr[ 0T @]

— 22NN /72 ¢ (det @' + det ®)
where the meson field @ is a Ny x N, matrix defined as
1

o = N (0 +in" ) I + (aq + im,) T, I = identity matrix
f




Thermal corrections: the CJT Method

J. Cornwall, R. Jackiw, E. Tomboulis PRD 10 (1974) 2428
G. Amelino-Camelia, PRD 47 (1993) 2356
RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159

@ Cornwall, Jackiw and Tomboulis (CJT) first proposed a generalized
effective action I' (¢, G) of composite operators, where the effective
action not only depends on ¢(x) but also on the propagator G(x, y)

® The effective action becomes the generating functional of the two-particle
irreducible (2P1) vacuum graphs rather than the conventional 1Pl
diagrams

® The CJT method is equivalent to summing up the infinite class of “daisy"
and “super daisy" graphs and is thus useful in studying such strongly
coupled models beyond mean-field approximation

¢ The PQM with the CJT method compared to other model computations
such as holography and the PNJL model, can bridge perturbative and
non-perturbative regimes of the effective theory



The CJT Method: formalism

J. Cornwall, R. Jackiw, E. Tomboulis PRD 10 (1974) 2428
G. Amelino-Camelia, PRD 47 (1993) 2356
RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159

In CJT formalism, the finite temperature effective potential with generic
scalar field ¢ is given by:

Verr(,G) = Vo(6) + % > /B In G4 (¢ )

il Z/ Gl k) — 1] + Va(6,G).

> . runs over all meson species; D=1 (¢; k) = tree level propagator
V5 (¢, G) = infinite sum of the two-particle irreducible vacuum graphs
Using the Hartree approximation, V5 (¢, G) is simplified to a one “double

2
bubble" diagram. In the simplest one-meson case, V5 {fﬁ G (¢; k)} .

We therefore obtain a gap equation by minimizing the above effective
potential with respect to the dressed propagator G;(¢; k):

1 oVa(o, G
G ork) = 5D (¢ k) +2 5(;({;’. k))




The CJT Method: thermal masses and effective potential

RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159

@ Using the gapped equation, the thermal mass is given by (R; = M;/T):

M2—m2+T—2 3Ny — Oy, > Is(R,)
o — Mo o 4,Nf26 B o

A2

15
+ ((N]% — 1) (Ao +2Xa) + s, N, ?c> Ig(R,)

3 15

e CJT improved finite temperature effective potential:

T 1
LSM - 2 2 2 2
VM (0) = 5y 3 | Ja(B2) — § (R =) 1n(R)|
dJp(R?) /OO 72 1
Ip(R?) =2 = [ d
B( ) dR? 0 x\/x2_|_R2€\/332—|—7R2_17

Jp(R?) = / dz 2? In (1 — eV x2+R2)
0

21



First-order phase transitions and bubble’s nucleation

@ In afirst-order phase transition, the transition occurs via bubble
nucleation and it is essential to compute the nucleation rate

@ The tunnelling rate due to thermal fluctuations from the metastable
vacuum to the stable one is suppressed by the three-dimensional
Euclidean action Ss5(7T)

3/2
iy = (S0 s
27T

@ The generic three-dimensional Euclidean action reads

o0 1 d 2
Sy(T) = dr [ drr? {— (d—p) + Var(p, T)

Y

0 2

where p denotes a generic scalar field with mass dimension one, [p] =1

@ The phase-transition temperature T, is often identified with the nucleation
temperature T,, defined as the temperature where the rate of bubble
nucleation per Hubble volume and time is order one: I'/H* ~ O(1)

@ More accurately, we can use percolation temperature T,,: the temperature
at which 34% of false vacuum is converted

@ For sufficiently fast phase transitions, the decay rate is approximated by:

T(T) ~ T'(t,)e’t=t) 22



Phase transition characteristics

PRD 104 (2021) 035005

The inverse duration time then follows as Huang, Reichert, Sannino, Wang
5= d S3(T)
oAt T,

The dimensionless version (3 is defined relative to the Hubble parameter
H, at the characteristic time t,

B _ . d S(T)
H, d7" T

B =

,

T=T.,

where we used that d7'/dt = —H(T)T.

We define the strength parameter o from the trace of the
energy-momentum tensor 6 weighted by the enthalpy

1A 1Ae — 3Ap
—?)’UJ_|__3 W ’

o AX =XE) — X for X = (6, e,p)

(+) denotes the meta-stable phase (outside of the bubble) while (—)
denotes the stable phase (inside of the bubble).

The relations between enthalpy w, pressure p, and energy e are given by

w — P, P

T OInT’ OlnT
Tew IS SUpPpPressed for large 8 occurring often in strongly coupled sectors

ap ap () _ _V(i)

eff
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Gravitational wave spectrum: an outlook

Contributions from bubble collision and turbulence are subleading

The GW spectrum from sound waves is given by

4 3 ?

HG5)

7 7 fpeak
The peak frequency

Jpeak = 1.9 - 10 Hz(mo) <1OOGeV> (%)

The peak amplitude

2 1
20ybeak _6 [ Vw Kgw O 100 \* .,
o 2107 (1) (S0 (19 g,

The factor Q3. accounts for the dilution of the GWs by the

dar

non-participating SM d.o.f.

[SIEN|

3
2 12N peak f
W20ew(f) = QR ( f)

Prad,dark
Prad,tot

Qdark —

The efficiency factor for the sound waves kg, consist of x,, as well as an
additional suppression due to the length of the sound-wave period 7,

(8#)%%)

BU;

Rsw = v/ Tsw Ry Tsw ™

_ _ 3
where Uy is the root-mean-square fluid velocity ~— U7 =~ 1

forg >>1 Ky (Ve = U

Ja

T 0.135+ /0.98 +
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Phase diagram and gravitational waves in the PQM model
RP, Reichert, Sannino and Wang, JHEP 02 (2024) 159
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The strongest signal we found can almost reach the LISA sensitivity ’5



Summary:

@ We developed a new approach based upon the well-established thermal EFT
and the existing lattice results to calculate the glueball CDM relic density
incorporating confinement effects and non-perturbative self-interactions

@ While in the present work we considered only SU(3), due its generality, our
approach can be easily applied to different gauge groups

® A dark gauge sector interacting only via gravitational interactions with the
SM and a confinement scale at the eV scale might explain the DM abundance
without spoiling other cosmological observables

@ Our method is suitable for investigations of the glueball formation in
modified cosmological histories, requiring only a simple modification of the
main evolution equation

® We analysed the phase transitions in the Polyakov-loop extended LSM
utilising the CJT method and computed the resulting primordial
gravitational wave spectra showcasing an enhancement for weak sigma self-
interactions and light sigma meson
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