

Orbifold stability of asymptotic GUTs

ANCA PREDA

G. Cacciapaglia, A. Cornell, A. Deandrea, W. Isnard, R. Pasechnik, A. Preda, Z. Wang [in preparation]

BSM² - Beyond the Standard Model BrainStorming Meeting

Outline

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potentia Stability of SU(N)

Conclusions

Introduction

2 Orbifold Stability

- Gauge-Higgs Unification
- One loop effective potential
- Stability of SU(N)

3 Conclusions

Grand Unification

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential Stability of

Conclusions

Standard picture:

SM gauge couplings meet at some high scale \uparrow Physics described by a unified gauge group $\mathcal{G} \supset \mathcal{G}_{SM}$ e.g. $SU(5), SO(10), E_6...$

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

Asymptotic Grand Unified Theories (aGUTs)

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential Stability of SU(N)

Conclusions

 Grand Unified Theories (GUTs) formulated in 5 or more space-time dimensions.¹

defined on $\mathbb{R}^4 \times K$, where \mathbb{R}^4 is the usual 4-dimensional Minkowski space and *K* defines δ *compact* extra dimensions.

• Gauge symmetry is broken using boundary conditions which violate the GUT symmetry

 \Rightarrow different from the usual Higgs mechanism

• **Motivation:** solution to hierarchy problem, lower GUT scale, smaller representations...

¹A. Hebecker, J. March-Russell, Nuclear Phys. B 625 (2002)

Introduction

Orbifold Stability

- Gauge-Higgs Unification
- One loop effective potential Stability of

Conclusions

• One extra dimension ($\delta = 1$) compactified on $K = \mathbb{S}^1/\mathbb{Z}_2 \times \mathbb{Z}'_2$:

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential Stability of

Conclusions

• One extra dimension ($\delta = 1$) compactified on $K = \mathbb{S}^1/\mathbb{Z}_2 \times \mathbb{Z}'_2$:

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential Stability of

Conclusions

• The inverse radius R^{-1} sets the scale of compactification.

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

- Introduction
- Orbifold Stability
- Gauge-Higgs Unification
- One loop effective potential Stability of
- Conclusions

• Each intrinsic \mathbb{Z}_2 transformation is specified by a parity matrix P acting on the fields

$$\Phi(x^{\mu},-y) = P\Phi(x^{\mu},y) = \pm \Phi(x^{\mu},y).$$

• Each P_i will break $\mathcal{G} \to \mathcal{H}_i$ on one boundary, such that

 $\mathcal{G}_{4\mathrm{D}} \equiv \mathcal{H}_i \cap \mathcal{H}_i$

• Viable model must contain the Standard Model

$$\mathcal{G}_{4D} \supset \mathcal{G}_{SM}$$

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

Introduction

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

A model can be fully defined in terms of ²

Gauge group G

Parity *P*

Parity assignments

²G. Cacciapaglia, arXiv:2309.10098 (2023)

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential Stability of

Conclusions

For a field $\Phi(x^{\mu}, y)$ we can do a Kaluza-Klein (KK) decomposition

Decomposition

$$\Phi\left(x^{\mu}, y\right) = \underbrace{\sum_{n=0}^{\infty} \phi_{+}^{(n)}(x^{\mu}) \cos\left(\frac{ny}{R}\right)}_{\text{parity-even}} + \underbrace{\sum_{n=1}^{\infty} \phi_{-}^{(n)}(x^{\mu}) \sin\left(\frac{ny}{R}\right)}_{\text{parity-odd}}$$

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

Gauge-Higgs Unification^{3 4}

Introduction

Gauge-Higgs Unification

One loop effective potential Stability of SU(N)

Conclusions

 A_5 behaves as a scalar field in 4D

 \equiv Higgs field

³Y. Hosotani, Phys. Lett. B 126 (1983)

⁴R. Contino,et al, Nucl. Phys. B 671 (2003)

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

Gauge-Higgs Unification

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potentia Stability of SU(N)

Conclusions

 $A_5 \equiv$ **gauge-scalar** embedded in the gauge fields

• Gauge-Higgs scalar A_5 will generate masses for bulk fields when getting a VEV $\langle A_5 \rangle = \alpha$:

$$\begin{bmatrix} -\frac{1}{2}F_{5\mu}F^{5\mu} \\ gauge \end{bmatrix} \begin{bmatrix} (D_{M}\Phi)^{\dagger} (D^{M}\Phi) \\ \overline{\Psi}iD_{M}\Gamma^{M}\Psi \end{bmatrix}$$

Gauge-Higgs Unification

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential Stability of

Conclusions

There will be a scalar potential for A_5 ! ...but gauge symmetry forbids the potential at tree level

one loop effective potential

(dictates symmetry breaking, mass of the scalars etc.)

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

Summing over KK modes and doing some algebra we find ⁵

⁵I. Antoniadis, et al, New Journal of Physics 3 (2001)

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

- gauge dominated
- minimum at $\alpha = 1/2$

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

- gauge dominated
- minimum at $\alpha = 1/2$

Not a viable model

Figure: Potential of an SU(6) model.

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

Gauge transformation to remove the VEV

Figure: Potential of an SU(6) model.

 \downarrow

change in the parity on one boundary

different breaking pattern

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

Minimum of $V_{\text{eff}}^{\text{gauge}}(\alpha)$ must be at $\alpha = 0$.

criteria of orbifold stability

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

Minimum of $V_{\text{eff}}^{\text{gauge}}(\alpha)$ must be at $\alpha = 0$.

criteria of orbifold stability

\Rightarrow Derive conditions that models need to satisfy in order to be phenomenologically relevant

Introduction

- Orbifold Stability
- Gauge-Higgs Unification
- One loop effective potentia
- Stability of SU(N)
- Conclusions

- aGUT in 5D based on the SU(N) gauge group⁶
- Extra dimension compactified on the orbifold $\mathbb{S}^1/\mathbb{Z}_2 imes \mathbb{Z}_2'$
- Most general parities

⁶N. Haba, T. Yamashita, JHEP 2004 (2004).

Introduction

- Orbifold Stability
- Gauge-Higgs Unification
- One loop effective potentia
- Stability of SU(N)
- Conclusions

- a GUT in 5D based on the SU(N) gauge group ^6
- Extra dimension compactified on the orbifold $\mathbb{S}^1/\mathbb{Z}_2 imes \mathbb{Z}_2'$
- Most general parities

Breaking pattern

 $SU(N) \to SU(p) \times SU(q) \times SU(r) \times SU(s) \times U(1)^3$,

where p + q + r + s = N.

⁶N. Haba, T. Yamashita, JHEP 2004 (2004).

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

• Fields will have parity assignments under (P_1, P_2) , which can be

(+,+) (+,-) (-,+) (-,-)

Parity assignments on the fields are

$$A_{\mu} \rightarrow \begin{array}{c} p \\ q \\ r \\ s \end{array} \begin{pmatrix} (+,+) & (+,-) & (-,+) & (-,-) \\ (+,-) & (+,+) & (-,-) & (-,+) \\ (-,+) & (-,-) & (+,+) & (+,-) \\ (-,-) & (-,+) & (+,-) & (+,+) \end{pmatrix}$$

- Gauge-scalar zero modes present in the (p, s) and (q, r) blocks
- Scalars in the bi-fundamental representation of $SU(p) \times SU(s)$ and $SU(q) \times SU(r)$

Introduction

Orbifold Stability

Gauge-Higgs Unification

Dne loop effective potential

Stability of SU(N)

Conclusions

Depending on the values of (p, q, r, s), we can have ⁷

- **Two-block** case: two of (p, q, r, s) non-zero, others zero
- **Three-block** case: three of (p, q, r, s) non-zero, others zero
- Four-block case: all four (p, q, r, s) non-zero

⁷G. Cacciapaglia et al. [in preparation]

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

Approach: Compute the potential, evaluate it at the two minima $(\alpha = 0, 1/2)$ and check which is the *global* one:

$$\Delta V_{\rm eff} = V_{\rm eff}(1/2) - V_{\rm eff}(0)$$

Two-block case

· Breaking pattern is

$$SU(N) \rightarrow SU(p) \times SU(N-p) \times U(1)$$

• Always stable: minimum of $V_{\text{gauge}}^{\text{eff}}$ at $\alpha = 0$

Anca Preda, Lund University

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

Three-block case

Breaking pattern is

 $SU(N) \rightarrow SU(p) \times SU(q) \times SU(s) \times U(1)^2$

• Stable only for $p \ge N/2$

Four-blocks

Breaking pattern is

 $SU(N) \rightarrow SU(p) \times SU(q) \times SU(r) \times SU(s) \times U(1)^3$

• Never stable: always decays into 3-blocks

Orbifold stability: SU(N) results

Stability of SU(N)

$$SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$$

 $SU(6) \rightarrow SU(3) \times SU(2) \times U(1)^2$

 $SU(8) \rightarrow SU(4) \times SU(2) \times SU(2)$

satisfy $p \geq N/2$ V

whereas

Examples:

$$SU(7) o SU(3) imes SU(3) imes U(1)^2$$
 has $p \le N/2$ X

Orbifold stability: Sp(2N), SO(N)

Introduction

Orbifold Stability

- Gauge-Higgs Unification
- One loop effective potenti:

Stability of SU(N)

Conclusions

- Analysis can be extended to other groups as well: Sp(2N), SO(N)
- Same strategy as before for identifying stable configurations
 - New parity definitions are needed \leftrightarrow group theory

•

$$\begin{split} &Sp(10) \rightarrow SU(3) \times SU(2) \times U(1) \times U(1) \\ &SO(10)^8 \rightarrow SU(3) \times SU(2) \times U(1) \times U(1) \\ &SO(11) \rightarrow SO(3) \times SO(2) \times SO(6) \sim SU(2) \times U(1) \times SU(4) \\ &SO(12) \rightarrow SU(4) \times SU(2) \times U(1) \times U(1) \end{split}$$

⁸M. Khojali, et al, PACP2022 (2022)

Orbifold stability: final classification

Introduction

Orbifolo Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

All possible worki	ng models for a	a $d = 5 \text{ aGUT}$:
--------------------	-----------------	--------------------------

Model	Breaking pattern	Stability criteria
SU(N)	$\mathrm{SU}(N) \to \mathrm{SU}(a) \times \mathrm{SU}(N-a) \times \mathrm{U}(1)$	stable \forall a
	$\mathrm{SU}(N) \to \mathrm{SU}(p) \times \mathrm{SU}(q) \times \mathrm{SU}(s) \times \mathrm{U}(1)^2$	$p \ge N/2$
$\operatorname{Sp}(2N)$	$\operatorname{Sp}(2N) \to \operatorname{Sp}(2a) \times \operatorname{Sp}(2(N-a))$	stable \forall a
	$\operatorname{Sp}(2N) \to \operatorname{Sp}(2p) \times \operatorname{Sp}(2q) \times \operatorname{Sp}(2s)$	$p \ge N/2$
	$\operatorname{Sp}(2N) \to \operatorname{SU}(p) \times \operatorname{SU}(q) \times \operatorname{U}(1)^2$	stable $\forall p, q$
SO(2N)	$SO(2N) \rightarrow SO(2a) \times SO(2(N-a))$	stable \forall a
	$\mathrm{SO}(2N) \to \mathrm{SO}(2p) \times \mathrm{SO}(2q) \times \mathrm{SO}(2s)$	$p \ge N/2$
	$\mathrm{SO}(2N) \to \mathrm{SU}(p) \times \mathrm{SU}(q) \times \mathrm{U}(1)^2$	stable $\forall p, q$
SO(2N+1)	$SO(2N+1) \rightarrow SU(2a+1) \times SU(2(N-a))$	stable \forall a
	$SO(2N+1) \rightarrow SO(2p+1) \times SO(2q) \times SO(2s)$	$2p+1 \ge (2N+1)/2$

Conclusions

Introduction

Orbifold Stability

- Gauge-Higgs Unification
- One loop effective potential Stability of SU(N)

Conclusions

- aGUTs as an alternative to standard GUTs
- Viable models have to pass certain criteria \Rightarrow **orbifold stability**
- For SU(N): two-blocks and three-blocks with $p \ge N/2$ are stable, while four-blocks are not
- The criteria of **orbifold stability** helps identify potentially interesting models
- Systematic classification that discards phenomenologically unrealistic scenarios

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential

Stability of SU(N)

Conclusions

Back-up slides

10 1 ž 0.10 αĩ 0.01 5 10 15 20 25

Anca Preda, Lund University

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potential Stability of

Conclusions

The effective potential for a scalar field in 4D is given by 5

$$egin{aligned} V_{ ext{eff}} &= rac{1}{2} \sum_{I} (-1)^{F_{I}} \int rac{d^{4}p}{(2\pi)^{4}} \log[p^{2}+m^{2}]\,, \; F_{I} = 0, \; 1 \ &= -rac{1}{32\pi^{2}} \sum_{I} (-1)^{F_{I}} \int_{0}^{\infty} dl \; l \; e^{-m^{2}/l} \end{aligned}$$

States appear as towers of KK modes with mass

$$m_n^2 = \frac{(n+c\,\alpha)^2}{R^2},$$

c depends on the representation

The field $\alpha \sim \langle A_5 \rangle$.

⁵I. Antoniadis, et al, New Journal of Physics 3 (2001)

Introduction

Orbifold Stability

> Gauge-Higgs Unification

Dne loop effective potentia

Stability of SU(N)

Conclusions

Assume a model with gauge group G and parities (P_1, P_2)

Gauge transformation Ω : $A'_M \to \Omega^{\dagger} A_M \Omega - \frac{i}{g} \Omega^{\dagger} \partial_M \Omega$ adjoint

Boundary conditions imposed on the adjoint become ⁶

 $\begin{aligned} A'_{\mu} &= P'_{i} \cdot A'_{\mu} \cdot P'_{i} - \frac{i}{g} P'_{i} \cdot \partial_{\mu} P'_{i} \\ A'_{5} &= -P'_{i} \cdot A'_{5} \cdot P'_{i} + \frac{i}{g} P'_{i} \cdot \partial_{5} P'_{i} \end{aligned}$ where $P'_{i} = \Omega^{\dagger} P_{i} \Omega$.

Freedom to choose the gauge $\Rightarrow \partial_M P'_i = 0$.

 $(P_1', P_2') \sim (P_1, P_2)$ equivalent!

⁶N. Haba, et al, Prog.Theor.Phys., 111(2004)

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

Removing the VEV

The SU(6) model with

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potent Stability of

Conclusions

 $P_1 = (+1\cdots, +1, +1, \cdots, +1, -1, \cdots, -1)$ $P'_2 = (\underbrace{+1, \cdots, +1}_{p=3}, \underbrace{-1, \cdots, -1}_{q=2}, \underbrace{+1, \cdots, +1}_{r=1})$

has a global minimum at $\alpha = 1/2$.

 \Rightarrow remove the value of α using a gauge transformation

$$\Omega(\alpha) = \exp\left(i\frac{g}{R}y\,A_5\right) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & \cos\frac{\alpha y}{R} & \sin\frac{\alpha y}{R}\\ 0 & 0 & 0 & 0 & \sin\frac{\alpha y}{R} & \cos\frac{\alpha y}{R} \end{pmatrix}$$

Removing the VEV

Introduction

Orbifold Stability

Gauge-Higgs Unification

One loop effective potenti Stability of SU(N)

Conclusions

For $y = \pi R$, the gauge transformation flips the last two signs of P'_2 , such that

$$\begin{array}{l} P_1=(+1\cdots,+1,+1,\cdots,+1,-1,\cdots,-1)\\ P_2'=(\underbrace{+1,\cdots,+1}_{p=4},\underbrace{-1,\cdots,-1}_{q=1},\underbrace{-1,\cdots,-1}_{s=1}) \end{array}$$

The 4D unbroken group will then be $SU(4) \times U(1) \times U(1)$.

Equivalence classes

Introduction

Orbifold Stability

Gauge-Higgs Unification

one loop effective potentia Stability of

Conclusions

Certain parity configurations are equivalent:

$$\begin{array}{rcl} P_1 \rightarrow -P_1 & \Rightarrow & p \leftrightarrow r, & q \leftrightarrow s \\ P_2 \rightarrow -P_2 & \Rightarrow & p \leftrightarrow q, & r \leftrightarrow s \\ P_i \rightarrow -P_i & \Rightarrow & p \leftrightarrow s, & q \leftrightarrow r \\ P_1 \leftrightarrow P_2 & \Rightarrow & q \leftrightarrow r \end{array}$$

Equivalence classes given by gauge transformations ⁶

 $[p,q,r,s] \sim [p+1,q-1,r-1,s+1] \sim [p-1,q+1,r+1,s-1]$

⁶N. Haba, et al, Prog.Theor.Phys., 111(2004)

Stability of Sp(2N) and SO(N)

• For Sp(2N) groups the Cartan generators are given by

$$X_i = \underbrace{\operatorname{diag}(0, \dots, 0, 1, 0, \dots, 0)}_{SU(N) \text{ Cartan generator}} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Conclusions

$$\Omega(\theta_i) = \prod \exp(i\theta_i X_i^C) = \operatorname{diag}(e^{i\theta_1}, \dots e^{i\theta_N}, e^{-i\theta_1}, \dots e^{-i\theta_N})$$

Possible parities
$$\Rightarrow P_{Sp(2N)}^{I} = P_{SU(N)} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \theta_{i} = 0, \pi$$

$$P^{II}Sp(2N) = P_{SU(N)} \otimes \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \theta_{i} = \pm \pi/2$$

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

July 12, 2024 25/25

.

Stability of Sp(2N) and SO(N)

• For SO(2N) groups the Cartan generators are given by

$$X_i = \underbrace{\mathsf{diag}(0, \dots, 0, 1, 0 \dots 0)}_{SU(N) \text{ Cartan generator}} \otimes \sigma_2$$

Conclusions

Cartan subalgebra

$$\Omega(\theta_i) = \prod \exp(i\theta_i X_i^{\mathcal{C}}) = \sum_i \operatorname{diag}(0, \dots, 0, 1, 0, \dots, 0) \otimes e^{i\theta_i\sigma_2}$$

Possible parities
$$P_{SO(2N)}^{I} = P_{SU(N)} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \theta_{i} = 0, \pi$$

 $P_{SO(2N)}^{II} = P_{SU(N)} \otimes \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \theta_{i} = \pm \pi/2$

(1 a)

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

July 12, 2024 25/25