
Towards Detector Agnostic Fast Calorimetry Simulation

Renato Cardoso1, Peter McKeown1, Mikolaj Piorczynski1, Piyush Raikwar1, Kyongmin Yeo2, Anna Zaborowska1

1CERN, Geneva, Switzerland
2IBM T. J. Watson Research Center, Yorktown Heights, NY USA

1

ML4Jets 2024

LPNHE, Paris, France

07.11.2024

Motivation

Make FastSim easily available without access to ML expertise.

2

● Development of machine learning models for fast shower simulation is computationally

expensive.

● Moreover, designing model for each experiment requires dedicated expertise.

Motivation

Make FastSim easily available without access to ML expertise.

2

● Development of machine learning models for fast shower simulation is computationally

expensive.

● Moreover, designing model for each experiment requires dedicated expertise.

1. Generic energy scoring mesh [guide]

○ Collect energy irrespective of the detector geometry.

○ Ready to use models. (Requires training)

2. Generalizable ML model

○ Train once on very large & diverse datasets to learn rich representations.

○ Then adapt to new detectors, quickly.

https://g4fastsim.web.cern.ch/docs/MetaHEP/Step01_generate

The dataset

3

Energy scoring

● The mesh aligns with the direction of incident particle.

○ The direction, i.e., the angles are recorded.

4

A detector agnostic mesh is constructed to contain the largest shower (CaloChallenge)

https://calochallenge.github.io/homepage/

Energy scoring

● The mesh aligns with the direction of incident particle.

○ The direction, i.e., the angles are recorded.

4

A detector agnostic mesh is constructed to contain the largest shower (CaloChallenge)

● The size of the cells can vary across detectors according to its X
0

 & R
M

, but the

number of cells remains constant1.

● Explored in LHCb (CHEP’24 talk)

1 i.e., for a particular model

r x 𝜑 x z = 9 x 16 x 45

https://calochallenge.github.io/homepage/
https://indico.cern.ch/event/1338689/contributions/6015805/

Dataset

The dataset is constructed by simulating 1M single-photon showers based on the

following conditions (continuous range):

1. Energy (e): uniformly sampled from 1 GeV - 1 TeV1

2. Azimuthal angle (φ): 0 - 2𝜋 rad

3. Theta (θ): 0.87 - 0.27 rad

51 1 GeV - 100 GeV for FCCee detectors

Dataset

The dataset is constructed by simulating 1M single-photon showers based on the

following conditions (continuous range):

1. Energy (e): uniformly sampled from 1 GeV - 1 TeV1

2. Azimuthal angle (φ): 0 - 2𝜋 rad

3. Theta (θ): 0.87 - 0.27 rad

51 1 GeV - 100 GeV for FCCee detectors

Repeat for multiple detectors: 2 x Par04 (SiW & SciPb), ODD, FCCeeCLD & FCCeeALLEGRO

Experimental stats:
● 1M showers per detector

● Training/Validation split - 900K/100K

● We test on multiple sets of point conditions, e.g., 50 GeV at 1.57 & 0 rad (1K showers each)

The ML model

6

Generative model

7

We use a diffusion model for higher accuracy and higher diversity.

Generative model

7

As for the architecture, we apply transformer blocks.

● A generalized architecture that works with any type of data, e.g., text, images, audio, etc.

● Models long-range dependencies (Attention mechanism).

We use a diffusion model for higher accuracy and higher diversity.

Diffusion process

We use EDM (Elucidating the Design Space of Diffusion-Based Generative Models) which

improves over DDPM by:

● Loss reweighting over different timesteps via signal-to-noise ratio

(continuous-time diffusion process)

● Reducing input variance introduced by diffusion process by scaling the input

● New samplers for faster inference. We use stochastic 2nd-order Heun sampler with 32

steps for sampling

● Noise distribution that approaches dataset mean at xT

8https://arxiv.org/abs/2206.00364

https://arxiv.org/abs/2206.00364

Model architecture

 9

Hyperparams:

● Embed dim = 144

● MLP ratio = 4x

● 4 DiT blocks

https://arxiv.org/abs/2212.09748

We use DiT blocks with modified patching and positional embedding more suited for our 3-dimensional “images”

https://arxiv.org/abs/2212.09748

Model architecture

 9

Hyperparams:

● Embed dim = 144

● MLP ratio = 4x

● 4 DiT blocks

https://arxiv.org/abs/2212.09748

We use DiT blocks with modified patching and positional embedding more suited for our 3-dimensional “images”

Preprocessing:

● Showers: log & “global norm”
● e, θ: linear scaling

● φ: sinusoidal

● Detector: K+1 dim one-hot
encoding

https://arxiv.org/abs/2212.09748

The results

10

Experiments

11

1. Training the diffusion model on single detector

○ Trained on Par04-SiW detector

○ The results are significantly better than non-diffusion models

2. Multi-geometry training

○ Detectors - Par04-SiW, Par04-SciPb, ODD & FCCeeCLD

○ Addition of detectors did not affect the accuracy

3. Adaptation

○ Finetune the pre-trained model on the desired detector - FCCeeALLEGRO

○ This can be any detector, the model does not have to know it beforehand

 Distillation

○ To make the sampling process of the diffusion model faster

Experiments

11

1. Training the diffusion model on single detector

○ Trained on Par04-SiW detector

○ The results are significantly better than non-diffusion models

2. Multi-geometry training

○ Detectors - Par04-SiW, Par04-SciPb, ODD & FCCeeCLD

○ Addition of detectors did not affect the accuracy

3. Adaptation

○ Finetune the pre-trained model on the desired detector - FCCeeALLEGRO

○ This can be any detector, the model does not have to know it beforehand

 Distillation

○ To make the sampling process of the diffusion model faster

Product-side

Client-side

Product/Client-side

Adaptation vs Scratch

12

Adaptation @ 10K Scratch @ 10K Scratch @ 100K

SGD steps

Note: Both adaptation and training from scratch is done on 100K samples ~10x less steps

What if just 1K samples?

13

Adaptation @ 10K

Scratch @ 100K

Needs a lot less dataNote: Dataset size would depend on the complexity of the detector. This is an example based on a preliminary study

Speeding up the inference

14

Taking longer steps

15

Diffusion models need to iterate over multiple diffusion steps, which leads to

slow sampling process.

● Reduce the number of steps to reach the final image given the noise

○ Faster samplers, e.g., DDIM, DPM-Solver++

○ Distillation, e.g., Progressive distillation to condense information

● First step, EDM - more stable diffusion process

● Second step, consistency distillation

Taking longer steps

15

Diffusion models need to iterate over multiple diffusion steps, which leads to

slow sampling process.

● Reduce the number of steps to reach the final image given the noise

○ Faster samplers, e.g., DDIM, DPM-Solver++

○ Distillation, e.g., Progressive distillation to condense information

● First step, EDM - more stable diffusion process

● Second step, consistency distillation

Map any point on the ODE trajectory to a fixed

initial point, thus achieving consistency

● Single-step diffusion model

https://arxiv.org/abs/2303.01469

https://arxiv.org/abs/2303.01469

Results - Distilled model

16Note: Distillation is done separately for now on Par04 detector

Timings

17

Speedup relative to Geant4

● We benchmark our distilled model with single

diffusion step relative to Geant4

● Geant4 times are based on γ interactions with Par04

geometry

● Placement of hits and batch size is taken into

consideration. More details here

Hardware:

● CPU - AMD EPYC 9334

● GPU - NVIDIA RTX 6000 Ada

https://indico.cern.ch/event/1253794/contributions/5588609/

Conclusion & Next steps
● We present a detector agnostic fastsim model, easily adaptable to new detectors

● The results are highly promising which significantly reduces the required statistics, and training time from days to just a

couple of hours1

● We get to an impressively low number of diffusion steps with the distilled model, which make this on par with VAE, GANs

181 Depending on the model size of course

What’s next?

● Tuning the model architecture. Exploring lightweight attention mechanisms

● Investigating how distillation affects adaptation

● Looking at reconstruction and physics level observables

● Testing our framework in experiments

○ The mesh is already implemented in Gaussino and DD4hep

○ Work started for ATLAS

https://gitlab.cern.ch/fastsim/ddfastsim

Thank you for listening!

Questions?

piyush.raikwar@cern.ch

19

mailto:piyush.raikwar@cern.ch

Backup

20

Pipeline for the client

21

1. User has access to a pre-trained model

2. User adapts the given model to their geometry

3. User distills the adapted model to make is faster

4. The model is ready

