

Towards Detector Agnostic Fast Calorimetry Simulation

Renato Cardoso¹, Peter McKeown¹, Mikolaj Piorczynski¹, Piyush Raikwar¹, Kyongmin Yeo², Anna Zaborowska¹

¹CERN, Geneva, Switzerland ²IBM T. J. Watson Research Center, Yorktown Heights, NY USA

> ML4Jets 2024 LPNHE, Paris, France

07.11.2024

Motivation

- Development of machine learning models for fast shower simulation is computationally expensive.
- Moreover, designing model for *each experiment* requires dedicated expertise.

Make FastSim easily available without access to ML expertise.

Motivation

- Development of machine learning models for fast shower simulation is computationally expensive.
- Moreover, designing model for each experiment requires dedicated expertise.

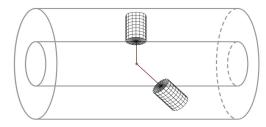
Make FastSim easily available without access to ML expertise.

- 1. Generic energy scoring mesh [guide]
 - Collect energy irrespective of the detector geometry.
 - Ready to use models. (Requires training)
- 2. Generalizable ML model
 - **Train once** on very large & diverse datasets to learn rich representations.
 - Then adapt to new detectors, quickly.

The dataset

Energy scoring

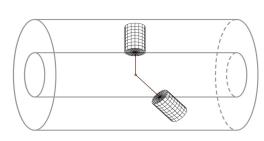
A detector agnostic mesh is constructed to contain the largest shower (CaloChallenge)

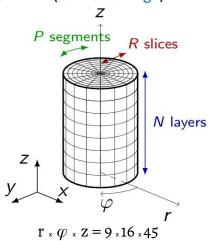


- The mesh aligns with the direction of incident particle.
 - The direction, i.e., the angles are recorded.

Energy scoring

A detector agnostic mesh is constructed to contain the largest shower (CaloChallenge)





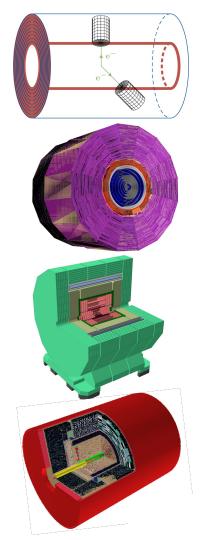
- The mesh aligns with the direction of incident particle.
 - The direction, i.e., the angles are recorded.
- The size of the cells can vary across detectors according to its X₀ & R_M, but the number of cells remains constant¹.
- Explored in LHCb (CHEP'24 talk)

4

Dataset

The dataset is constructed by simulating 1M single-photon showers based on the following conditions (continuous range):

- 1. Energy (e): uniformly sampled from 1 GeV 1 TeV¹
- 2. Azimuthal angle ($\boldsymbol{\varphi}$): 0 2 π rad
- 3. Theta (*θ*): 0.87 0.27 rad



Dataset

The dataset is constructed by simulating 1M single-photon showers based on the following conditions (continuous range):

- 1. Energy (e): uniformly sampled from 1 GeV 1 TeV¹
- 2. Azimuthal angle ($\boldsymbol{\varphi}$): 0 2 π rad
- 3. Theta (*θ*): 0.87 0.27 rad

Repeat for multiple detectors: 2 x ParO4 (SiW & SciPb), ODD, FCCeeCLD & FCCeeALLEGRO

Experimental stats:

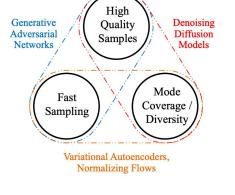
- 1M showers per detector
- Training/Validation split 900K/100K
- We test on multiple sets of point conditions, e.g., 50 GeV at 1.57 & 0 rad (1K showers each)

The ML model

Generative model

We use a diffusion model for higher accuracy and higher diversity.

Generative reverse denoising process



Noise

Generative model

High Quality

Samples

Variational Autoencoders, Normalizing Flows

Generative Adversarial

Networks

Fast

Sampling

Denoising

Diffusion

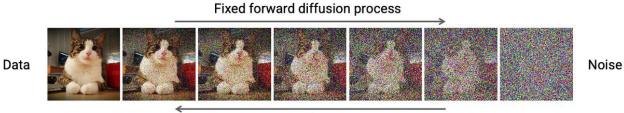
Models

Mode

Coverage

Diversity

We use a diffusion model for higher accuracy and higher diversity.



Generative reverse denoising process

As for the architecture, we apply transformer blocks.

- A generalized architecture that works with any type of data, e.g., text, images, audio, etc.
- Models long-range dependencies (Attention mechanism).

Diffusion process

We use **EDM** (Elucidating the Design Space of Diffusion-Based Generative Models) which improves over DDPM by:

- Loss reweighting over different timesteps via signal-to-noise ratio (continuous-time diffusion process)
- Reducing input variance introduced by diffusion process by scaling the input
- New samplers for faster inference. We use stochastic 2nd-order Heun sampler with 32 steps for sampling
- Noise distribution that approaches dataset mean at x^T

Model architecture

We use **DiT** blocks with modified patching and positional embedding more suited for our 3-dimensional "images"

Block Denoised shower representation of Cylindrical shower (45x16x9) the shower + 1 Point-Wise Unpatchify Feed Forward Reshape to Layer norm original shape Projection from embed dim Reshape to cubes (2x2x2) + Layer Norm 8 704 Multi-Head Self-Attention 4 X DiT Block Layer norm 704 Projection to **3D** convolution Concatenate conditions embed dim (2x2x2) + MLP Patchify Projection Projection 1 1 1 ١ Noisv shower Block 1 Cylindrical shower Input Conditions representation of (45x16x9) Timestep Conditions 9 the shower https://arxiv.org/abs/2212.09748 (45x16x9)

Hyperparams:

- Embed dim = 144
- MLP ratio = 4x
- 4 DiT blocks

Model architecture

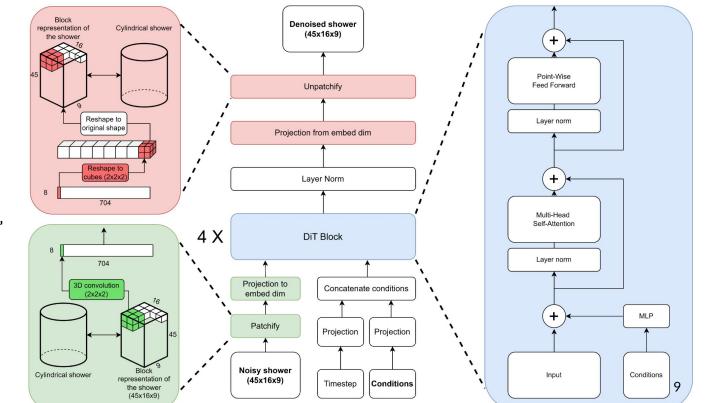
We use DiT blocks with modified patching and positional embedding more suited for our 3-dimensional "images"

Hyperparams:

- Embed dim = 144
- MLP ratio = 4x
- 4 DiT blocks

Preprocessing:

- Showers: log & "global norm"
- *e*, *θ*: linear scaling
- $\boldsymbol{\varphi}$: sinusoidal
- Detector: K+1 dim one-hot encoding



The results

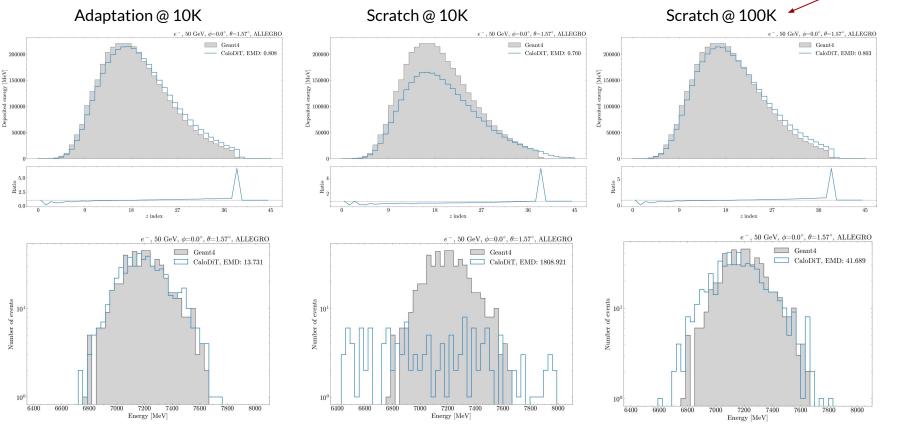
Experiments

- 1. Training the diffusion model on single detector
 - Trained on Par04-SiW detector
 - The results are significantly better than non-diffusion models
- 2. Multi-geometry training
 - Detectors Par04-SiW, Par04-SciPb, ODD & FCCeeCLD
 - Addition of detectors did not affect the accuracy
- 3. Adaptation
 - Finetune the pre-trained model on the desired detector FCCeeALLEGRO
 - This can be any detector, the model does not have to know it beforehand Distillation
 - To make the sampling process of the diffusion model faster

Experiments

	1.	Training the diffusion model on single detector
		• Trained on Par04-SiW detector
Product-side $\left\{ \right.$		\circ The results are significantly better than non-diffusion models
	{ 2.	Multi-geometry training
	C C	 Detectors - Par04-SiW, Par04-SciPb, ODD & FCCeeCLD
		• Addition of detectors did not affect the accuracy
Client-side	{ 3.	Adaptation
	C	\circ $\ $ Finetune the pre-trained model on the desired detector - FCCeeALLEGRO
		\circ $\ $ This can be any detector, the model does not have to know it beforehand
Product/ Client-side	<i>s</i>	Distillation
	l	• To make the sampling process of the diffusion model faster

Adaptation vs Scratch

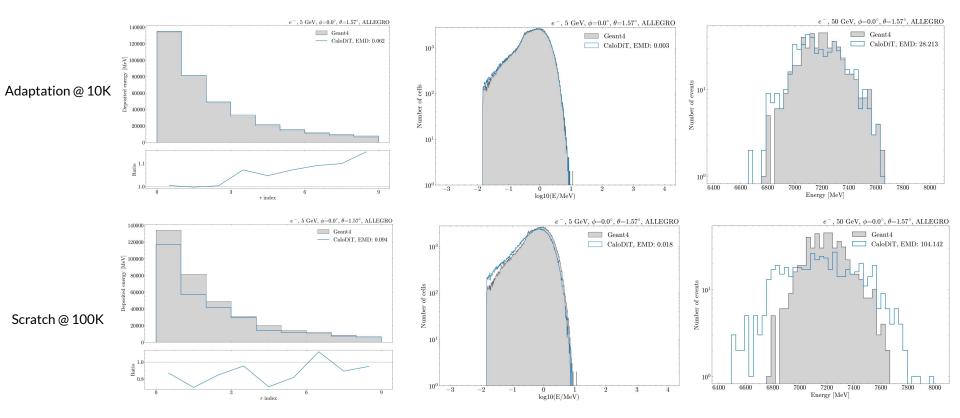


Note: Both adaptation and training from scratch is done on 100K samples

~10x less steps

SGD steps

What if just 1K samples?



Note: Dataset size would depend on the complexity of the detector. This is an example based on a preliminary study Needs a lot less data

Speeding up the inference

Taking longer steps

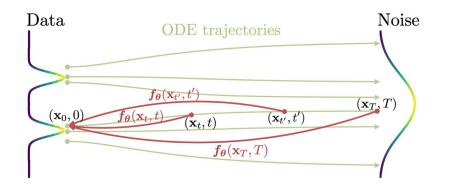
Diffusion models need to iterate over multiple diffusion steps, which leads to slow sampling process.

- Reduce the number of steps to reach the final image given the noise
 - Faster samplers, e.g., DDIM, DPM-Solver++
 - Distillation, e.g., Progressive distillation to condense information
- First step, EDM more stable diffusion process
- Second step, consistency distillation

Taking longer steps

Diffusion models need to iterate over multiple diffusion steps, which leads to slow sampling process.

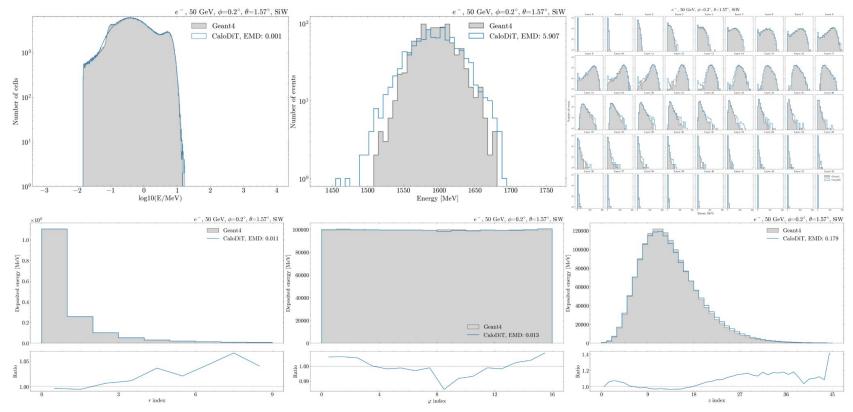
- Reduce the number of steps to reach the final image given the noise
 - Faster samplers, e.g., DDIM, DPM-Solver++
 - Distillation, e.g., Progressive distillation to condense information
- First step, EDM more stable diffusion process
- Second step, consistency distillation



Map any point on the ODE trajectory to a fixed initial point, thus achieving *consistency*

• Single-step diffusion model

Results - Distilled model



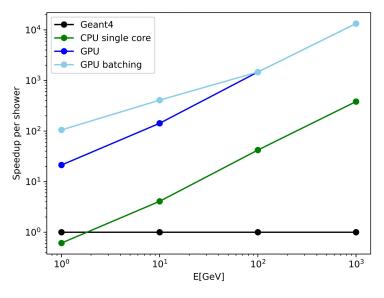
Note: Distillation is done separately for now on ParO4 detector

Timings

- We benchmark our distilled model with single diffusion step relative to Geant4
- Geant4 times are based on γ interactions with Par04 geometry
- Placement of hits and batch size is taken into consideration. More details here

Hardware:

- CPU AMD EPYC 9334
- GPU NVIDIA RTX 6000 Ada



Speedup relative to Geant4

Conclusion & Next steps

- We present a detector agnostic fastsim model, easily adaptable to new detectors
- The results are highly promising which significantly reduces the required statistics, and training time from days to just a couple of hours¹
- We get to an impressively low number of diffusion steps with the distilled model, which make this on par with VAE, GANs

What's next?

- Tuning the model architecture. Exploring lightweight attention mechanisms
- Investigating how distillation affects adaptation
- Looking at reconstruction and physics level observables
- Testing our framework in experiments
 - The mesh is already implemented in Gaussino and DD4hep
 - $\circ \qquad \text{Work started for ATLAS}$

Thank you for listening! Questions?

piyush.raikwar@cern.ch

Backup

Pipeline for the client

- 1. User has access to a pre-trained model
- 2. User adapts the given model to their geometry
- 3. User distills the adapted model to make is faster
- 4. The model is ready