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Motivation

e Development of machine learning models for fast shower simulation is computationally
expensive.

e Moreover, designing model for each experiment requires dedicated expertise.

Make FastSim easily available without access to ML expertise. ]
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1.  Generic energy scoring mesh [guide]
o  Collect energy irrespective of the detector geometry.

o  Ready to use models. (Requires training)

2. Generalizable ML model
o  Trainonce on very large & diverse datasets to learn rich representations.

o  Then adapt to new detectors, quickly.



https://g4fastsim.web.cern.ch/docs/MetaHEP/Step01_generate

The dataset



Energy scoring

A detector agnostic mesh is constructed to contain the largest shower (CaloChallenge)

e The mesh aligns with the direction of incident particle.

o  Thedirection,i.e., the angles are recorded.



https://calochallenge.github.io/homepage/
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A detector agnostic mesh is constructed to contain the largest shower (CaloChallenge)

N layers

z
e The mesh aligns with the direction of incident particle.

o  Thedirection,i.e., the angles are recorded. I« @ xZ=9x16.45
e  Thesize of the cells can vary across detectors according to its X, &R, but the

number of cells remains constant?.

e ExploredinLHCb (CHEP’24 talk)

Li.e., for a particular model


https://calochallenge.github.io/homepage/
https://indico.cern.ch/event/1338689/contributions/6015805/

Dataset

The dataset is constructed by simulating 1M single-photon showers based on the
following conditions (continuous range):

1.  Energy (e): uniformly sampled from 1 GeV - 1 TeV?!
2. Azimuthal angle (¢): 0- 27 rad 6\ GEANT4
3. Theta(0):0.87-0.27 rad

11 GeV - 100 GeV for FCCee detectors
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The dataset is constructed by simulating 1M single-photon showers based on the
following conditions (continuous range):

1.  Energy (e): uniformly sampled from 1 GeV - 1 TeV?!
2. Azimuthal angle (¢): 0- 27 rad 6\ GEANT4
3. Theta(0):0.87-0.27 rad

Repeat for multiple detectors: 2 x Par04 (SiW & SciPb), ODD, FCCeeCLD & FCCeeALLEGRO

Experimental stats:
e  1Mshowers per detector
e  Training/Validation split - 200K/100K
e  We test on multiple sets of point conditions, e.g., 50 GeV at 1.57 & 0 rad (1K showers each)

11 GeV - 100 GeV for FCCee detectors



The ML model
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As for the architecture, we apply transformer blocks.

A generalized architecture that works with any type of data, e.g., text, images, audio, etc.

Models long-range dependencies (Attention mechanism).




Diffusion process

We use EDM (Elucidating the Design Space of Diffusion-Based Generative Models) which
improves over DDPM by:

e Lossreweighting over different timesteps via signal-to-noise ratio
(continuous-time diffusion process)

e Reducinginput variance introduced by diffusion process by scaling the input

e New samplers for faster inference. We use stochastic 2"-order Heun sampler with 32
steps for sampling

e Noise distribution that approaches dataset mean at x"

https://arxiv.org/abs/2206.00364


https://arxiv.org/abs/2206.00364

Model architecture

We use DiT blocks with modified patching and positional embedding more suited for our 3-dimensional “images”

Hyperparams:

Embed dim = 144
MLP ratio = 4x
4 DiT blocks

https://arxiv.org/abs/2212.09748
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Model architecture

We use DiT blocks with modified patching and positional embedding more suited for our 3-dimensional “images”

Hyperparams:

° Embed dim = 144
MLP ratio = 4x
° 4 DiT blocks

Preprocessing:
e  Showers: log & “global norm”
e ¢, 0 linearscaling
e  @:sinusoidal
e  Detector: K+1 dim one-hot

encoding

https://arxiv.org/abs/2212.09748
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https://arxiv.org/abs/2212.09748

The results



Experiments

1.  Training the diffusion model on single detector
o  Trained on Par04-SiW detector
o  Theresults are significantly better than non-diffusion models
2.  Multi-geometry training
o  Detectors - Par04-SiW, Par04-SciPb, ODD & FCCeeCLD
o  Addition of detectors did not affect the accuracy
3.  Adaptation
o  Finetune the pre-trained model on the desired detector - FCCeeALLEGRO
o  This can be any detector, the model does not have to know it beforehand
Distillation

o  Tomake the sampling process of the diffusion model faster

11
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Adaptation vs Scratch
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Note: Both adaptation and training from scratch is done on 100K samples ~10x less steps 12



What if just 1K samples?
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Note: Dataset size would depend on the complexity of the detector. This is an example based on a preliminary study Needs a lot less data
13



Speeding up the inference



Taking longer steps

Diffusion models need to iterate over multiple diffusion steps, which leads to
slow sampling process.

e Reduce the number of steps to reach the final image given the noise

o Faster samplers, e.g.,, DDIM, DPM-Solver++

o Distillation, e.g., Progressive distillation to condense information
e First step, EDM - more stable diffusion process
e Second step, consistency distillation

15



Taking longer steps

Diffusion models need to iterate over multiple diffusion steps, which leads to
slow sampling process.

e Reduce the number of steps to reach the final image given the noise

o Faster samplers, e.g.,, DDIM, DPM-Solver++

o Distillation, e.g., Progressive distillation to condense information
e First step, EDM - more stable diffusion process
e Second step, consistency distillation

Data Noise
\ Map any point on the ODE trajectory to a fixed
>} initial point, thus achieving consistency
Jo(xit'
x7p, T
(%00 Tolsi =1, 3 (xer, t') oz, ) e Single-step diffusion model
il Jo(x7,T) /

https://arxiv.org/abs/2303.01469
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https://arxiv.org/abs/2303.01469

Results - Distilled model
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Timings

e  We benchmark our distilled model with single
diffusion step relative to Geant4

e Geant4times are based ony interactions with Par04
geometry

e Placement of hits and batch size is taken into

consideration. More details here

Hardware:

e CPU-AMDEPYC 9334
e  GPU-NVIDIARTX 6000 Ada

Speedup per shower

104 4
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—o— Geant4
—8— CPU single core
—e— GPU

GPU batching

10° 10! 102 103
E[GeV]

Speedup relative to Geant4
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https://indico.cern.ch/event/1253794/contributions/5588609/

Conclusion & Next steps

e  We present adetector agnostic fastsim model, easily adaptable to new detectors

e  Theresults are highly promising which significantly reduces the required statistics, and training time from days to just a
couple of hours!?

e  Wegettoanimpressively low number of diffusion steps with the distilled model, which make this on par with VAE, GANs

What’s next?

e  Tuningthe model architecture. Exploring lightweight attention mechanisms
e Investigating how distillation affects adaptation
e Looking at reconstruction and physics level observables
e  Testing our framework in experiments
o  The meshis already implemented in Gaussino and DD4hep

o Work started for ATLAS

! Depending on the model size of course

18


https://gitlab.cern.ch/fastsim/ddfastsim

Thank you for listening!

Questions?

pivush.raikwar@cern.ch

19


mailto:piyush.raikwar@cern.ch

Backup



Pipeline for the client

> 0 Dd e

User has access to a pre-trained model
User adapts the given model to their geometry
User distills the adapted model to make is faster

The model is ready

21



