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Motivations for Self-Supervised Learning (SSL)

Learning without labels

e Self-Supervised Learning: A type of machine learning where models learn useful features and
representations from unlabeled data

e To learn effectively (like human), system must learn these representations directly from unlabeled
data such as images or sounds, rather than from manually assembled labeled datasets.

e With the HL-LHC upgrade [1] in the near future, we will need to simulate an order of magnitude
more events with a more complicated detector geometry to keep up with the recorded data [2].
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1. [HL-LHC] https://arxiv.org/abs/1705.08830
3 2. [Computing for HL LHC] https://doi.org/10.1051/epjconf/201921402036
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JEPA: Different SSL Architectures

From the perspective of computer vision
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(a) Joint-Embedding Architecture (b) Generative Architecture (c) Joint-Embedding Predictive Architecture

» Difference between JEPA and (a): JEPA is augmentation free and predictive

» Difference between JEPA and (b): JEPA predicts in the latent space

Assran et al., “Self-supervised learning from images with a joint-embedding predictive architecture”, 2023.
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https://arxiv.org/abs/2301.08243
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An AKS8 Jet



An AKS8 Jet




J-JEPA

Cluster subjets with radius 0.2




J-JEPA: Define Target and Context Subjets

Randomly divide subjets into target/context categories

An AKS8 Jet




J-JEPA: Define Target and Context Subjets

Randomly divide subjets into target/context categories
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J-JEPA: Subjet Embedding Layer (SEL)

Each subjet creates its embedding independently
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J-JEPA: Calculate Subjet Representations

Using Transformer Encoder Blocks
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J-JEPA: Predict in the Representation Space

Providing the target subjets’ coordinates to the predictor Target subjets’

representations
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J-JEPA: Pretraining
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Datasets

We use JetClass for pretraining and TopTagging for finetuning

Dataset Size Description Portions we Role in transfer learning
name used
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J-JEPA: Pretraining Goals oat Jot reprosentation

Before we finetune the model with labels as this will be the latent

space connected to the
down stream heads
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Information collapse: The model fails to capture the meaningful variations in the data, leading to poor
performance in tasks like classification or regression.
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Latent after Pre-training: Not Collapsing

J-JEPA model learned a diverse latent space

Cosine Similarity Matrix Between Jets (Flattened Representations)
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J-JEPA: Finetuning Setup

From subjet representation to jet representation
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Aggregation Methods for Fine-tuning

3 Different methods of attaching the latent space to a classification head

latent space Aggregation Classification | redicted
(subjet features) Methods Jet features Head probabilities

Top QCD

Jet 1| 0.71 | 0.29
_|_ _|_ _”_ > Jet 2| 0.94 | 0.06
Jet 3| 0.32 | 0.68

Top QCD

Subjets Sum

0.71 | 0.29

Flatten

0.94 | 0.06

0.32 | 0.68

Top QCD

0.71 | 0.29
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Our training and evaluation setup

Baseline refers to the same model directly trained on the finetuning dataset without pretraining

Attach :
class : | Finetuneon |: Evaluate on
Pretrain on attention _> Top Tagging Top Tagging
JetClass Blocks :
J-JEPA
Hode : | Train on Top |:
Atltach Tagglngé frr]om E Evaluate on
class ! scratc Top Tagging
attention .
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This Is our
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Metrics

Accuracy: correctly predicted / total number of samples

Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)
ROC Curve
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J-JEPA Performance

Pretrain on JetClass and finetune on Top Tagging

Inverse Val Rejection
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Models shown on this slide used MLP as SEL, flattened the subjet representations to represent each jet, and were fine-tuned with 10% validation set




J-JEPA Performance

Pre-train and fine-tune on TopTagging
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The left hand side used MLP as SEL, flattened the subjet representations to represent each jet, and were fine-tuned with 10% validation set
The right hand side used transformer SEL, used class attention blocks to aggregate jet representations, and were fine-tuned on the whole validation set
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Visualizing learned features

UMAP and direct comparison show that the

features have good separation power
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Summary

J-JEPA: A subject-based Joint-Embedding Predictive Architecture

Pre-train J-JEPA on a large dataset and finetune the target encoder on a small dataset achieves
better performance than training the encoder from scratch,

Pre-train J-JEPA + fine-tune on the same dataset achieves better performance faster than the
baseline that learned from scratch in a supervised fashion.

Different encoder architectures has different response to the J-JEPA pre-training, but overall
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Ongoing Work

Implementing a particle-based JEPA
Training shorter models to reduce overfitting
Experiment different ways to provide information to the predictor

Generalize the JEPA scheme to different physics objects: particles, events,
detector readout, etc.
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Example: The I-JEPA Architecture
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Details of the Top Tagging Dataset

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26]| with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momen-
tum smearing changes with 7. The fat jet is then defined through the anti-kr algorithm |27
in FastJet 28] with R = 0.8. We only consider the leading jet in each event and require

pr; =550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within AR = 0.8,
and all top decay partons to be within AR = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |n;| < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

190239914



Details of the JetClass Dataset

Simulation setup. Jets in this dataset are simulated with
standard Monte Carlo event generators used by LHC ex-
periments. The production and decay of the top quarks
and the W, Z and Higgs bosons are generated with MAD-
GRAPHS_aMC@NLO (Alwall et al., 2014). We use PYTHIA
(Sjostrand et al., 2015) to evolve the produced particles, 1.e.,
performing parton showering and hadronization, and pro-
duce the final outgoing particles'. To be close to realistic
jets reconstructed at the ATLAS or CMS experiment, detec-
tor effects are stmulated with DELPHES (de Favereau et al.,
2014) using the CMS detector configuration provided in
DELPHES. In addition, the impact parameters of electrically
charged particles are smeared to match the resolution of the
CMS tracking detector (CMS Collaboration, 2014). Jets
are clustered from DELPHES E-Flow objects with the anti-
kt algorithm (Cacciari et al., 2008; 2012) using a distance
parameter i = 0.8. Only jets with transverse momentum
in 500-1000 GeV and pseudorapidity |n| < 2 are consid-
ered. For signal jets, only the “high-quality’ ones that fully
contain the decay products of initial particles are included?.

2202.03772 3o



Subjet Index

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Transformer Embedding Layer Effects

Correlation between subjets is reduced

Correlation Matrix of Subjets for Jet 105, mean=0.7294003367424011 Correlation Matrix of Subjets for et 102, mean=0.66975325345993304
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WIP: Study of how to provide the additional info

Pre-train and fine-tune on Top Tagging

Experiments

Encode subjet
coordinates at both
(encoder and predictor)

Encode coordinates only
at predictor

Encode pT ranking at
both

Use a MLP to encode
subjet coordinates

Inverse
Rejection
Power

63.99

45.33

45.02

Converging...
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Study of subjet embedding

Pre-training and fine-tuning on Toptagging dataset

Inverse Rejection

Dimension Reduction

Dimension Expansion

Power
Attention 86.42 73.81
MLP 73.55 63.99
Linear 44.31
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Strategies to prevent collapse

Targets being padded subjets e We only select targets from
non-empty subjets
Most particles are padded so

all subjets look the same to e \We implemented Attention-
the model based embedding

——> |
Information bottleneck in the e \We decreased the size of the
predictor is too big predictor dimension
Dataset was not normalized ° We normalized the dataset

Plus: EMA updating the Target Encoder
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J-JEPA: Splitting jets into subjets

number of subjets per jet

Percentage of Subjets per Jet (10% Sample) by Algorithm

1 CA
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J-JEPA: Splitting jets into subjets
number of particles per subjet

Percentage of Constituents per Subjet (10% Sample) by Algorithm

1 CA
1 kt
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Number of Constituents 38



