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Outline
• Motivation


• Introduction to JEPA


• Our J-JEPA approach


• Dataset


• Pretraining + fintuning setup


• Pretraining result


• Pretraining + fine-tuning result


• Ongoing and Future work
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Motivations for Self-Supervised Learning (SSL)
Learning without labels
• Self-Supervised Learning: A type of machine learning where models learn useful features and 

representations from unlabeled data 
• To learn effectively (like human), system must learn these representations directly from unlabeled 

data such as images or sounds, rather than from manually assembled labeled datasets. 
• With the HL-LHC upgrade [1] in the near future, we will need to simulate an order of magnitude 

more events with a more complicated detector geometry to keep up with the recorded data [2].
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1. [HL-LHC] https://arxiv.org/abs/1705.08830  
2. [Computing for HL LHC] https://doi.org/10.1051/epjconf/201921402036

https://arxiv.org/abs/1705.08830


JEPA: Different SSL Architectures
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From the perspective of computer vision

• Difference between JEPA and (a): JEPA is augmentation free and predictive


• Difference between JEPA and (b): JEPA predicts in the latent space

Assran et al., “Self-supervised learning from images with a joint-embedding predictive architecture”, 2023.

https://arxiv.org/abs/2301.08243


JEPA: Joint Embedding Predictive Architecture

• Predict the masked parts in the representation space 
• Augmentation free to minimize bias
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J (Jet) - JEPA
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An AK8 Jet
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An AK8 Jet
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J-JEPA
Cluster subjets with radius 0.2

An AK8 Jet
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J-JEPA: Define Target and Context Subjets
Randomly divide subjets into target/context categories

An AK8 Jet
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J-JEPA: Define Target and Context Subjets
Randomly divide subjets into target/context categories
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J-JEPA: Subjet Embedding Layer (SEL)
Each subjet creates its embedding independently
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Providing the target subjets’ coordinates to the predictor
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J-JEPA: Pretraining
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Datasets
We use JetClass for pretraining and TopTagging for finetuning

JetClass Dataset Top Tagging Dataset

Dataset 
name Size Description Portions we 

used Role in transfer learning

JetClass 100 Million 
AK8 Jets

Contains 10 
classes of jets

500K Top jets 
500k q/g jets

Stand in for the large 
pretaining unlabeled 

dataset

Top Tagging 1.2 Million 
AK8 Jets

Only Top and 
QCD jets

760K mixed 
jets*

Stand in for the small fine-
tuning dataset

1902.099142202.03772

* We only used jets with more 
than 10 subjets
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J-JEPA: Pretraining Goals
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Goal: Jet representation 
space does not collapse 
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Information collapse: The model fails to capture the meaningful variations in the data, leading to poor 
performance in tasks like classification or regression.



Latent after Pre-training: Not Collapsing
J-JEPA model learned a diverse latent space
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cos(θ) =
A ⋅ B

∥A∥∥B∥

Let A be the features of Jet 1, and B be the features of 
Jet 2, then the cosine similarity is defined as

1. Randomly select 128 Jets.


2. Represent each jet by their 
flattened subjet representations


3. Calculate cosine similarity 
between each pair of jets

Average Cosine Similarity: 0.457



J-JEPA: Finetuning Setup
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Aggregation Methods for Fine-tuning
3 Different methods of attaching the latent space to a classification head
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Our training and evaluation setup
Baseline refers to the same model directly trained on the finetuning dataset without pretraining
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Metrics
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Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)
Accuracy: correctly predicted / total number of samples

Significance: In a background dominant 
dataset, how much background can you 
reject while letting in a certain number of 
signal samples (the more the better)



J-JEPA Performance
Pretrain on JetClass and finetune on Top Tagging

Models shown on this slide used MLP as SEL, flattened the subjet representations to represent each jet, and were fine-tuned with 10% validation set



J-JEPA Performance
Pre-train and fine-tune on TopTagging
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The left hand side used MLP as SEL, flattened the subjet representations to represent each jet, and were fine-tuned with 10% validation set

The right hand side used transformer SEL, used class attention blocks to aggregate jet representations, and were fine-tuned on the whole validation set

51.2 % ↑

5.4 % ↑



Visualizing learned features
UMAP and direct comparison show that the 
features have good separation power 
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Summary
• J-JEPA: A subject-based Joint-Embedding Predictive Architecture


• Pre-train J-JEPA on a large dataset and finetune the target encoder on a small dataset achieves 
better performance than training the encoder from scratch,


• Pre-train J-JEPA  + fine-tune on the same dataset achieves better performance faster than the 
baseline that learned from scratch in a supervised fashion.


• Different encoder architectures has different response to the J-JEPA pre-training, but overall 
positive.

26

Encoder = ParticleNet? ParT? 
Something brand new?

Same encoder architecture

A set of 
object 

components

Context

MSE 
Loss

Target



Ongoing Work
• Implementing a particle-based JEPA


• Training shorter models to reduce overfitting


• Experiment different ways to provide information to the predictor


• Generalize the JEPA scheme to different physics objects: particles, events, 
detector readout, etc.
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Thank you for listening!



Backup
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Example: The I-JEPA Architecture
I: Image
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Details of the Top Tagging Dataset

1902.0991431



Details of the JetClass Dataset

2202.03772 32



Transformer Embedding Layer Effects
Correlation between subjets is reduced

33MLP subjet embedding Transformer subjet embedding



WIP: Study of how to provide the additional info
Pre-train and fine-tune on Top Tagging
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Experiments
Encode subjet 

coordinates at both 
(encoder and predictor)

Encode coordinates only 
at predictor

Encode pT ranking at 
both

Use a MLP to encode 
subjet coordinates

Inverse 
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Power
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Study of subjet embedding
Pre-training and fine-tuning on Toptagging dataset

Inverse Rejection 
Power Dimension Reduction Dimension Expansion

Attention 86.42 73.81

MLP 73.55 63.99

Linear 44.31
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Strategies to prevent collapse

• Targets being padded subjets


• Most particles are padded so 
all subjets look the same to 
the model


• Information bottleneck in the 
predictor is too big


• Dataset was not normalized

• We only select targets from 
non-empty subjets


• We implemented Attention-
based embedding


• We decreased the size of the 
predictor dimension


• We normalized the dataset

36

Plus: EMA updating the Target Encoder



number of subjets per jet
J-JEPA: Splitting jets into subjets
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J-JEPA: Splitting jets into subjets
number of particles per subjet

38


