A Library for ML-based Fast Calorimeter Shower Simulation at Future Collider Experiments and Beyond

Peter McKeown^{1,*}, Thorsten Buss², Frank Gaede³, Gregor Kasieczka², Anatolii Korol³, Katja Kruger³, Thomas Madlener³, Piyush Raikwar¹, Anna Zaborowska¹

¹CERN

² University of Hamburg, UHH

³ Deutsches Elektronen-Synchrotron, DESY

*peter.mckeown@cern.ch

7.11.2024, ML4Jets 2024, Paris

Evaluating Generative Models for Fast Simulation

- Lots of generative models explored for this task
 - Largely evaluated for **single shower** performance- numerous evaluation metrics explored

Review Article

CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation

"Calorimeter Simulation", generated via midjourney, 2022

See <u>talk from Claudius</u> on the CaloChallenge

Evaluating Generative Models for Fast Simulation

- Lots of generative models explored for this task
 - Largely evaluated for **single shower** performance- numerous evaluation metrics explored
- However, need to evaluate in **real physics events**: many particles, overlapping showers
 - Fold in effects from reconstruction chain
 - Ultimately have to judge models in terms of physics
 performance after reconstruction
 - Inherently dependent on the specifics of an experiment
- Need to have a way to interface models with full simulation / infrastructure provided by Geant4, as well as the broader reconstruction tools present in the software ecosystems used in HEP

Applications		
EDM	Database Interfaces	
Experiment	xperiment Framework	
DetSim	EvGen	
Core HEP Libraries		
OS Kernel and Libraries (Non-HEP specific)		

Figure credit: G. Stewart/ A. Sailer

Fast Simulation in Geant4

- 'Full simulation' provides MC transportation of individual particles though the detector geometry
- Geant4 provides fast simulation hooks
 - · Associated with a specific detector 'region'
 - **Terminate full simulation**, dependent on particle type, kinematics etc.
 - Pass particle information to a **separate process** to simulate detector response- e.g. parameterization

Fast Simulation in Geant4

- 'Full simulation' provides MC transportation of individual particles though the detector geometry
- Geant4 provides fast simulation hooks
 - · Associated with a specific detector 'region'
 - **Terminate full simulation**, dependent on particle type, kinematics etc.
 - Pass particle information to a **separate process** to simulate detector response- e.g. parameterization
- Geant4 provides the extended <u>Par04</u> example showing how to use ML models in Geant4
 - Energy deposits recorded in virtual scoring mesh
 - Inference libraries: ONNX Runtime, libTorch, lwtnn
 - Can also be run on GPU (currently batch size 1)
 - Provided datasets 2 and 3 for the CaloChallenge

The DD4hep Toolkit

- Provides a means for defining a **common detector geometry** that can be used for purposes of **simulation**, **reconstruction**, conditions, alignment, visualisation and analysis
- Used by LHCb and CMS experiments at LHC
- Part of the **Key4hep** turnkey software stack for **future colliders**, e.g. : CEPC, CLIC, EIC, FCCee, FCChh, ILC, LUXE, Muon Collider ...

The DDFastShowerML Library

- Generic library for running ML-based fast sim models in DD4hep: *DDFastShowerML* <u>https://gitlab.desy.de/ilcsoft/ddfastshowerml</u>
 - Uses fast sim hooks in Geant4 via DDG4
 - Follow Par04 example for interfacing with Geant4
 - Can be used with realistic, detailed detector geometries

• **Components** of library **decoupled** as far as possible

Endcap, barrel etc...

Dealing With Realistic Geometries

- Physical structure of calorimeter can change in certain regions
 - May want to run full rather than fast sim
 - May wish to select different models for different geometrical regions of the detector
- This can be implemented, for a given geometrical configuration, via the generic **Trigger Interface**
- E.g. for ILD excluding (i.e. running full sim):
 - Corners of the octagonal barrel
 - The transition between barrel and endcap
- The **geometry** placement and **trigger** necessarily have to be implemented on a per detector basis

Conventions and How to Integrate a New Model

- Define local coordinate system for consistent placement
 - Right-handed coordinate system centered on incident position
 - Z-axis perpendicular to the calorimeter face
- Assuming the training dataset conforms to the conventions, adding a new model involves *only* adding a new class (via the Model Interface)
 - Ensuring the **correct input** is provided to the model
 - Ensure correct conversion of model output to spacepoints
- Must be able to convert model into a format that can be called in C++
- Inference Interface currently supports libTorch and Onnx Runtime

- Purely for development purposes- provide functionality to **read showers** from a **library** (e.g. HDF5 file)
 - This is not intended as a solution for production!

Example: BIB-AE

- Update at <u>ML4Jets last year</u>
- **Unification** of common **VAE** + **GAN** models, with additional application specific post processing
- Using **regular grid** (image) representation of shower

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, Buhmann et al., Comput Softw Big Sci 5, 13 (2021)

Hadrons, Better, Faster, Stronger Buhmann, P.M. et al, MLST 3 2, 025014 (2022)

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, P.M. et al. <u>MLST 4 035044 (2023)</u>

Example: BIB-AE

- Update at <u>ML4Jets last year</u>
- **Unification** of common **VAE** + **GAN** models, with additional application specific post processing
- Using regular grid (image) representation of shower
- Study use for simulation of photon showers from **pi0 decays** in the process $e^+e^- \rightarrow \tau^+\tau^-$ for ILD @ 250 GeV
- Integration also allows for a **more realisitic timing** comparison to Geant4, including overheads (e.g. geometry placement etc.)

Development and Performance of a Fast Simulation Tool for Showers in High Granularity Calorimeters based on Deep Generative Models, P. M. (Doctoral thesis, U. Hamburg), <u>DESY-THESIS-2024-008</u>

Peter McKeown | 7.11.2024 | ML4Jets 2024, Paris

11

See Anatolii's upcoming talk

Example: CaloClouds

- Point cloud diffusion model
 - More efficient computation: ~6x faster than BIB-AE!
- Use full sim information at a **lower level than** the detector readout
 - Better handling of irregular geometries

CaloClouds: Fast Geometry-		
Independent		
Highly-Granular Calorimeter		
Simulation,		
Buhmann, P.M. et al.,		
<u>JINST 18 11, P11025 (2023)</u>		

CaloClouds II: Ultra-fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, P.M. et al., JINST 19 04, P04020 (2024)

Example: L2LFlows

- Sequentially produces shower shape in each layer
- Now also including
 - Convolutions
 - Angular conditioning
 - More granular regular grid

See <u>Thorsten's talk</u> from Tuesday

Example: CaloDiT and Cylindrical Scoring Mesh Placements

- CaloDiT Diffusion Transformer model
- Also explored in the context of adaption to different detector geometries
- Alternative fast simulation approach
 - Score energy deposits in mesh not directly attached to detector readout
- Validation of initial integration performed for **CLD** by C. Zhu

CaloDiT photon shower simulated in CLD with DDFastShowerML

Complete integration WIP

Common Benchmarks Being Developed

- Common Di-Photon Benchmark (so far for CALICE Si-W calorimeters)
- Two photons orthogonal to face of ILD ECAL

Observable with **direct physical relevance** for quantifying model performance!

Summary

- Library for incorporating ML models with Geant4 full simulation for realistic detector geometries
- Provides means of testing in **production-ready environment**
- Provides access to new **reconstruction** and **physics benchmarks**
- Can also study/account for geometrical effects- realisitic application
- New models can be integrated (and compared) in as straightforward a manner as possible

Outlook:

- Add batching and GPU support
- Add support for **additional detectors**
- Add examples for **hadronic shower** generation
- Release datasets for the community
- Collaborate with different experimental communities to define new physics benchmarks

• ...

DD4hep Integration: DDFastShowerML

Algorithm 1 Pseudocode illustrating the order of operations for the core component <i>DDFastShowerML</i> library.
1: if Trigger check Trigger(track) == True then
2: Kill full simulation of particle
3: $localDir = Geometry.getLocalDir(track)$
4: inputs = $Model$.prepareInputs(track, localDir)
5: outputs = <i>Inference</i> .runInference(inputs)
6: localSPs = <i>Model</i> .convertOutput(track, localDir, outputs)
7: globalSPs = $Geometry$.localToGlobal(track, localSP)
8: for (sp in globalSPs) do
9: <i>HitMaker</i> .makeHit(sp, track)
10: end for
11: else
12: Full simulation of particle with GEANT4
13: end if

