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Density ratio estimation

What: Given samples from two distributions p(x)

q(x)

and g(x), estimate log r(x) = log ——
p(x)

p(jet|0) _ < q(x)
argmax, log (O(x)), = 00 @(X)

p(jet)

(this talk)
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How: Machine learning!

* Neyman-Pearson Lemma: The best classifier between g and p is given
by any monotonic function of r

» |[dea: Train a classifier on samples from g and p, solve for r (see e.qg.
Cranmer et al., 1506.02169)

But... how do we use a point estimate for r? If the

estimate is poor, downstream applications will suffer.
Need a measure of uncertainty in the estimate!

See Hermans et al. 2110.06581 for more on problems caused by neglecting these
uncertainties
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w: f. ensembles

log r(x | {w;}) = w;fi(x)

where w, are scalar weights and f,(x) are frozen networks

Pros Cons

* Fully frequentist, no prior [* Does not assess uncertainty

dependence from training of the f;
* Intuitive: just like nuisance

parameters!
 Computationally efficient;
no bootstrapping
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w: f. ensembles

log r(x | {w;}) = w;fi(x)

where w, are scalar weights and f,(x) are frozen networks

Pros Cons

* Fully frequentist, no prior [* Does not assess uncertainty

dependence from training of the f;
* Intuitive: just like nuisance

parameters: o Potentially a big problem!
 Computationally efficient;

no bootstrapping
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Where do these fit in?
The lay of the (frequentist) land

Bootstrap No bootstrap
D 1
COSS KLIEP (Sugiyama et al. 2008)
Include
. Pareto excluded
training

w: f. ensembles

uncertainties

Includes
training Neyman construction Hopefully next year’s talk!

uncertainties (e.g. https://cds.cern.ch/record/2915316)
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The big surprise: for the problems
we’ve checked, this actually works!




1D toy problem: Gaussians

u=0.1,o0=1
0.4 TR el
o Let g be N (u, 02) and p be ,-’,}f" \"?{\ ——- S&;
N (—u, 6%), then log r = 2ux/c* o3 i \\
* Evaluation: / \.\\
* Directly check coverage of r 041 /./‘i/ \
with pseudoexperiments i A
 “Mixture fraction task” gives us ] ,{L"' A\
a measure of performance in 2 AN
downstream task g S ; s
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Mixture fraction task

Estimate the parameter f given a set of samples D drawn i.i.d. from

px|f) = fq(x) + (1 = f)p(x)

r(x) suffices to estimate f with maximum likelihood estimation:

px, 1 1)
p(x,)

f = argmaxfz log — argmaxfz log(fr(x,) + (1 = 1))
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ML4Jets: Quark/gluon likelihood

* Now, g ~ Pythia 8.226 quark jets, p ~ Pythia 8.226 gluon jets
* We use the dataset included in the EnergyFlow package (you can
find the jets here: https://zenodo.org/records/3164691)
* Since | don’t know the exact answer for the likelihood ratio (let me
know if you do!), we only report coverage for the mixture fraction task

Technical detail: We construct an IRC-safe ensemble with energy-flow

networks, so the objective function is actually the projection of log r to
an |IRC-safe observable
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Ok, what did we actually do?




w: f. ensembles: the recipe

Ingredients

- M randomly initialized networks
- A training dataset with V45, Samples each from g and p

- (Optional) A dataset of size NVtggt for downstream applications

1. Train the f; on the training dataset

2. Find w; using the MLC loss (introduced in Tito D’Agnolo et al.
1806.02350)

3. Compute C;; = Cov(w;, w;) with analytic formulae
4. Propagate uncertainties for downstream tasks
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Training the f.

» Objective: Train f. such that there is some set of w, for which w /. is a

good model of log r... that leaves a lot of freedom!
» (At least) two families of approaches:

1. Train one distinguished f, to model log r as well as possible (just
like beforel), use the remaining f; to model the residuals
e “w. = (1,0,0,0,...).”

2. Train the f; on equal footing (conventional ensembling)
e “w.=1/M,1/M,...)”"
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Training the f.

1. Train f, as a classifier between g and p (using e.g. the MLC loss)

2. Train {f, />, ..

not as classifiers (ask me why!)

0.6

Example basis functions

.»Ji7—1} to be uncorrelated with each other and f,, but
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Fitting the w,

Now, find the w, minimizing the symmetrized MLC loss:

Ntmin Ntmin
Fw)=— Y Wfilx) — (€7 = D]+ Y [—w,fix,) — ("% — 1))
Xa™~Y Xa™~P

Estimators of this form are called M-estimators (Hubert 1964) in the
statistics literature, and their covariances are known!
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Uncertainty propagation

* As an example of a downstream application, consider the mixture

fraction task
N

test
A

(Reminder, given r: f = argmaxfz log(fr(x,) + (1 — f)))

04
* Gong-Samaniego theorem (Gong and Samaniego 1981): With a
consistent estimator of the w., and therefore of log r (under the well-

specified assumption), the estimator for f that we get by just plugging 7
Into the MLE I1s asymptotically consistent with known variance!

. - .
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That’s It!
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w: f. ensembles: the recipe

Ingredients

- M randomly initialized networks
- A training dataset with V45, Samples each from g and p

- (Optional) A dataset of size NVtggt for downstream applications

1. Train the f; on the training dataset

2. Find w; using the MLC loss (introduced in Tito D’Agnolo et al.
1806.02350)

3. Compute C;; = Cov(w;, w;) with analytic formulae (M-estimator)
4. Propagate uncertainties for downstream tasks (e.g. GS)
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w: f. ensembles

log r(x] {w;}) = w;fi(x)

* Fully frequentist, no prior [* Does not assess uncertainty

dependence from training of the f;
* Intuitive: just like nuisance

parameters! Maybe not a big problem!
 Computationally efficient;

no bootstrapping
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Backup slide: Bias

* Two possible causes of bias in inference:
1. Model misspecification (M too small/networks poorly trained)
2. Breakdown of asymptotic regime (/NV too small and/or M too large)
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Backup slide: Why decorrelation?

 Better reason: In vanilla ensembles, uncorrelated ensemble members
decrease variance for prediction (see e.g. Mehta et al. 2019); no reason

to expect different behavior here
* Worse reason: Numerics! Minimization of the symMLC loss Is way easier

when covariance Is diagonal

0L

anaW]

x Cov (fl,f])
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