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Density ratio estimation
What: Given samples from two distributions  

and , estimate 

p(x)
q(x) log r(x) ≡ log

q(x)
p(x)

Why: Parameter estimation Reweighting

 argmaxθ log
p(jet |θ)

p(jet)
⟨𝒪(x)⟩q = ⟨ q(x)

p(x)
𝒪(x)⟩

p
(this talk)

…
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• Neyman-Pearson Lemma: The best classifier between  and  is given 
by any monotonic function of 


• Idea: Train a classifier on samples from  and , solve for  (see e.g. 
Cranmer et al., 1506.02169)

q p
r

q p r

4

How: Machine learning!

But… how do we use a point estimate for ? If the 
estimate is poor, downstream applications will suffer. 

Need a measure of uncertainty in the estimate!

r

See Hermans et al. 2110.06581 for more on problems caused by neglecting these 
uncertainties



Sean Benevedes5

 ensembleswi fi

• Fully frequentist, no prior 
dependence


• Intuitive: just like nuisance 
parameters!


• Computationally efficient; 
no bootstrapping

• Does not assess uncertainty 
from training of the fi

Pros Cons

log r(x |{wi}) = wi fi(x)

where  are scalar weights and  are frozen networkswi fi(x)
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 ensembleswi fi

• Fully frequentist, no prior 
dependence


• Intuitive: just like nuisance 
parameters!


• Computationally efficient; 
no bootstrapping

• Does not assess uncertainty 
from training of the 


    Potentially a big problem!

fi

Pros Cons

log r(x |{wi}) = wi fi(x)

where  are scalar weights and  are frozen networkswi fi(x)
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Where do these fit in?

Bootstrap No bootstrap

Includes 
training 
uncertainties

Doesn’t 
include 
training 
uncertainties  ensembleswi fi

Hopefully next year’s talk!

KLIEP (Sugiyama et al. 2008)

Neyman construction

Pareto excluded

The lay of the (frequentist) land

(e.g. https://cds.cern.ch/record/2915316)
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The big surprise: for the problems 
we’ve checked, this actually works!
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• Let  be  and  be 
, then 


• Evaluation: 

• Directly check coverage of r 

with pseudoexperiments

• “Mixture fraction task” gives us 

a measure of performance in 
downstream task

q 𝒩(μ, σ2) p
𝒩(−μ, σ2) log r = 2μx/σ2

9

1D toy problem: Gaussians
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Estimate the parameter  given a set of samples  drawn i.i.d. from f D
p(x | f ) = fq(x) + (1 − f )p(x)

10

Mixture fraction task

 suffices to estimate  with maximum likelihood estimation:
r(x) f

̂f = argmaxf ∑
α

log
p(xα | f )
p(xα)

= argmaxf ∑
α

log( fr(xα) + (1 − f ))
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, , ,  scannedNtrain = 25,000 Ntrainings = 10 Nsamp = 300 f
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• Now, Pythia 8.226 quark jets, Pythia 8.226 gluon jets

• We use the dataset included in the EnergyFlow package (you can 

find the jets here: https://zenodo.org/records/3164691)

• Since I don’t know the exact answer for the likelihood ratio (let me 

know if you do!), we only report coverage for the mixture fraction task

q ∼ p ∼

13

ML4Jets: Quark/gluon likelihood

Technical detail: We construct an IRC-safe ensemble with energy-flow 
networks, so the objective function is actually the projection of  to 
an IRC-safe observable

log r

https://zenodo.org/records/3164691
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, , , Ntrain = 20,000 Ntrainings = 3 Nsamp = 300 f = 0.1
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Ok, what did we actually do?
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 ensembles: the recipewi fi

•  randomly initialized networks

• A training dataset with  samples each from  and 

• (Optional) A dataset of size  for downstream applications

M
Ntrain q p

Ntest

Ingredients

1. Train the  on the training dataset

2. Find  using the MLC loss (introduced in Tito D’Agnolo et al. 

1806.02350)

3. Compute  with analytic formulae

4. Propagate uncertainties for downstream tasks

fi
ŵi

Cij ≡ Cov(ŵi, ŵj)
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Training the fi
• Objective: Train  such that there is some set of  for which  is a 

good model of … that leaves a lot of freedom!

• (At least) two families of approaches:


1. Train one distinguished  to model  as well as possible (just 
like before!), use the remaining  to model the residuals 

• “ ”


2. Train the  on equal footing (conventional ensembling)

• “ ”

fi wi wi fi
log r

f0 log r
fi

wi = (1,0,0,0,...)i
fi

wi = (1/M,1/M, . . . )i
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Training the fi
• Objective: Train  such that there is some set of  for which  is a 

good model of … that leaves a lot of freedom!

• (At least) two families of approaches:


1. Train one distinguished  to model  as well as possible (just 
like before!), use the remaining  to model the residuals 

• “ ”
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fi wi wi fi
log r

f0 log r
fi

wi = (1,0,0,0,...)i
fi

wi = (1/M,1/M, . . . )i
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Training the fi
1. Train  as a classifier between  and  (using e.g. the MLC loss)

2. Train  to be uncorrelated with each other and , but 

not as classifiers (ask me why!)

f0 q p
{f1, f2, . . . , fM−1} f0
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Fitting the wi

Now, find the  minimizing the symmetrized MLC loss:





Estimators of this form are called M-estimators (Hubert 1964) in the 
statistics literature, and their covariances are known!

ŵi

ℒ(w) = −
Ntrain

∑
xα∼q

[wi fi(xα) − (e−wi fi(xα) − 1)] +
Ntrain

∑
xα∼p

[−wi fi(xα) − (ewi fi(xα) − 1)]

Cij = V−1
ik UklV−1

lj Vik ≡ Cov ( ∂ℒ
∂wi

,
∂ℒ
∂wj ), Ukl ≡

∂2ℒ
∂wi∂wj

where( )
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Uncertainty propagation

• As an example of a downstream application, consider the mixture 
fraction task


          (Reminder, given :  )


• Gong-Samaniego theorem (Gong and Samaniego 1981): With a 
consistent estimator of the , and therefore of  (under the well-
specified assumption), the estimator for  that we get by just plugging  
into the MLE is asymptotically consistent with known variance!

r ̂f = argmaxf

Ntest

∑
α

log( fr(xα) + (1 − f ))

ŵi log r
f ̂r

, σ2
̂f
= σ2

̂f,MLE (1 + AiCijAj) Ai ≡
∂ℒ

∂wi∂f
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That’s it!
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 ensembles: the recipewi fi

•  randomly initialized networks

• A training dataset with  samples each from  and 

• (Optional) A dataset of size  for downstream applications

M
Ntrain q p

Ntest

Ingredients

1. Train the  on the training dataset

2. Find  using the MLC loss (introduced in Tito D’Agnolo et al. 

1806.02350)

3. Compute  with analytic formulae (M-estimator)

4. Propagate uncertainties for downstream tasks (e.g. GS)

fi
ŵi

Cij ≡ Cov(ŵi, ŵj)
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 ensembleswi fi

• Fully frequentist, no prior 
dependence


• Intuitive: just like nuisance 
parameters!


• Computationally efficient; 
no bootstrapping

• Does not assess uncertainty 
from training of the 


   Maybe not a big problem!

fi

Pros Cons

log r(x |{wi}) = wi fi(x)
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Backup slide: Bias

• Two possible causes of bias in inference:

1. Model misspecification (  too small/networks poorly trained)

2. Breakdown of asymptotic regime (  too small and/or  too large)

M
N M
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Backup slide: Why decorrelation?

• Better reason: In vanilla ensembles, uncorrelated ensemble members 
decrease variance for prediction (see e.g. Mehta et al. 2019); no reason 
to expect different behavior here


• Worse reason: Numerics! Minimization of the symMLC loss is way easier 
when covariance is diagonal

∂ℒ
∂wi∂wj

∝ Cov (fi, fj)


