

Semi-Supervised Permutation Invariant Particle-Level Anomaly Detection

<u>Gabriel Matos</u>, Elena Busch, Ki Ryeong Park, Julia Gonski November 7th, 2024 Columbia University ML4Jets 2024 @ LPNHE, Paris

Outline

- 1. Overview of Anomaly Detection
- 2. Particle Flow Network (PFN)
- 3. Anomaly Detection on Particle Flow Latent Space (ANTELOPE)
- 4. Application to LHC Olympics Dataset
- 5. Performance Results

Anomaly Detection

- Typically, collider searches follow a recipe
 - 1. Pick a model for some signature
 - 2. Determine relevant parameters for the model (mass ranges, etc.)
 - 3. Design selections on your observables to increase signal over background
- **Problem:** way too many models/signatures to develop independent searches for!
- How can we probe across many signatures w/out heavily relying on particular models?

Anomaly Detection (AD): train a machine learning model to detect anomalous features of a dataset inconsistent with a background only model

Unsupervised Detect outliers by training directly on data

Weakly-Supervised Detect outliers with combination of labeled and unlabeled data Semi-Supervised Learn to detect outliers relying on some signal priors

Anomaly Detection

- Typically, collider searches follow a recipe
 - 1. Pick a model for some signature
 - 2. Determine relevant parameters for the model (mass ranges, etc.)
 - 3. Design selections on your observables to increase signal over background
- **Problem:** way too many models/signatures to develop independent searches for!
- How can we probe across many signatures w/out heavily relying on particular models?

Anomaly Detection (AD): train a machine learning model to detect anomalous features of a dataset inconsistent with a background only model

> **Unsupervised** Detect outliers by training directly on data

Weakly-Supervised Detect outliers with combination of labeled and unlabeled data Semi-Supervised Learn to detect outliers relying on some signal priors

Challenges of AD Models in Collider Physics

• A common model for AD in collider data is the autoencoder (AE) / variational AE (VAE)

- **Problem:** AEs require a fixed length input \rightarrow hard to provide low-level inputs
 - Collider events, at a fundamental level, can be described as an unordered collection of particles represented by low-level detector objects (tracks, calorimeter clusters, etc.)
 - This modeling is inherently variable in length and permutation invariant
 - This can be accommodated in AEs by zero-padding the inputs or via an RNN that models inputs as a sequence, but introduces unnatural ordering/padding to the inputs

Permutation Invariant Particle-Level AD

• There are subtle correlations in low-level detector signatures that we should exploit...

How can we gain the benefits of a semi-supervised approach for AD while using low-level detector objects and maintaining the natural permutation invariance of collider events?

- We can use a supervised classifier to create an intelligent embedding of data
 - This embedding should be fixed-length, preserve permutation invariance, and select salient features of our data that can be exploited in an AD task
 - We then use this embedding as input to an AE/VAE architecture

Particle Flow Network (1)

- One way to achieve this embedding is via a **Particle Flow Network** (PFN) architecture
- The <u>PFN</u> is a **supervised** classifier based on the the <u>Deep Sets</u> framework for point clouds
 - The network takes in an arbitrary number of particles with features that are encoded into a latent space, per-particle representation by a set of learned functions Φ_a
 - These per-particle representations are combined into event level observables \mathcal{O}_a that are **inherently permutation invariant** by **summing** over all input particles

Particle Flow Network (2)

The PFN solves the problem of representing variable length unordered data by creating a symmetric observables \mathcal{O}_a of an arbitrary number of particles with *d* features

Anomaly Detection on Particle Flow Latent Space

- The PFN embedding encodes key discriminating features learned by the supervised model according to the signal & background priors
 - These can be exploited to broaden the sensitivity beyond the trained signal model by AD while keeping a low-level, symmetric input modeling
- We use the PFN latent variables to design a novel architecture titled **ANTELOPE** that trains an **unsupervised** VAE on the \mathcal{O}_a and performs AD on the PFN's latent space

LHC Olympics Dataset

- As proof of concept, we've applied the ANTELOPE model to the <u>LHC Olympics</u> dataset
- The dataset consists of 3 R&D and 3 black box samples
 - Each event described as a set of up to 700 (massless) particle four vectors (p_T, η, ϕ)
 - **R&D:** QCD multijet, 2-prong, and 3-prong

Inputs & Pre-Processing

- We keep the 160 highest p_T particles as inputs and use their p_T , η , ϕ as training features
 - Each feature is normalized via Min-Max scaling between 0 and 1
 - Events with less than 160 particles are zero-padded
 - By design, the padding does not impact the performance of the PFN/VAE

# of Events	R&D QCD	R&D 2-prong	R&D 3-prong	BB1	BB2	BB3
Signal	N/A	100k	100k	834	N/A	1200 dijet / 2000 trijet
Total	1M	100k	100k	1M	1M	1M

Training

- The PFN used to generate the embedding for ANTELOPE is **trained on the 2-prong and QCD R&D samples**, with 80k events used from training and 20k for validation
- The VAE is trained on an orthogonal 80k events from QCD R&D meant to represent data, where these events are first encoded into the PFN's pre-trained \mathcal{O}_a basis before training

ANTELOPE Performance: Anomaly Score

- We assess ANTELOPE's performance & model independence by comparing it to the standalone, supervised PFN classifier
 - We evaluate both ANTELOPE and the PFN on the validation samples from training, the 3-prong R&D dataset, as well as the *signals* in the black boxes

ANTELOPE Performance: Model Robustness

- We verified the robustness of the ANTELOPE approach by repeating these studies using the **three-prong R&D** sample instead to train the PFN
- We observe similar trends in performance
 - The PFN encoding can be varied to accommodate different signal priors

Concluding Remarks

- We've developed a new semi-supervised architecture ANTELOPE that performs anomaly detection on particle-level, unordered data by encoding the features into a PFN latent space
- ANTELOPE shows generalizability across many signal models assessed via LHCO dataset
 - The network is able to exploit low-level correlations to be sensitive to the challenging signal of BB3, where both dijet and trijet decay modes must be found
 - Different PFN embeddings can be employed for broad applications in BSM searches

Thank you!

Semi-supervised permutation invariant particle-level anomaly detection

arXiv: 2408.17409

Gabriel Matos^a Elena Busch^a Ki Ryeong Park^a Julia Gonski^b
^a Columbia University, 538 West 120th St, New York, NY 10027
^b SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025

E-mail: gabriel.pinheiro.matos@cern.ch

*ChatGPT's interpretation of ANTELOPE

Gabriel Matos, ML4Jets @ LPNHE, Paris

November 7th, 2024

LHC Olympics Dataset

• Sample definitions can be found in <u>LHCO paper</u>, <u>R&D</u> and <u>black boxes</u> Zenodo links

• **QCD** Multijet \rightarrow R&D: generated w/ Pythia, BB2: generated w/ Herwig & modified Delphes card

PFN Latent Space

- Another nice feature of the PFN embedding is that we can inspect the latent space vars.
 - The latent space of the PFN is 64-dimensional \rightarrow 64 individual \mathcal{O}_a distributions
 - These are plotted below, with all \mathcal{O}_a distributions scaled between 0 and 1

Anomalous distributions in latent space w.r.t. both QCD and two-prong samples

PFN Architecture Details

- First stage of the PFN has a 3-dimensional input of p_T , η , ϕ followed by two dense fully connected layers of dimension 75 with an output dimension of 64 (i.e. the Φ_a)
- Each Φ_a gets summed for the 160 input particles to derive the 64-dimensional \mathcal{O}_a
- The second stage of the PFN takes in the 64 \mathcal{O}_a as input, followed by 3 dense fully connected layers of dimension 75, and 2-dimensional binary classifier output
- A cross-entropy loss is used for the training and model optimization

ANTELOPE Architecture Details

- Takes in as input the 64-dimensional \mathcal{O}_a from a pre-trained PFN
- The VAE has a hidden layer of dimension 32, and latent layer of dimension 32
- A combination of the mean square error (MSE) and Kullback-Leibler divergence D_{KL} are used in the definition of the loss function

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} |\mathcal{O}_i - \mathcal{O}'_i| + \lambda D_{\text{KL}}$$