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Anomaly Detection

e Typically, collider searches follow a recipe

1. Pick a model for some signature

2. Determine relevant parameters for the model (mass ranges, etc.)

3. Design selections on your observables to increase signal over background
 Problem: way too many models/signatures to develop independent searches for!

* How can we probe across many signatures w/out heavily relying on particular models?

Anomaly Detection (AD): train a machine
learning model to detect anomalous features of a
dataset inconsistent with a background only model

Unsupervised Weakly-Supervised
Detect outliers by Detect outliers with

Semi-Supervised
Learn to detect
outliers relying on
some signal priors

training directly on combination of labeled
data and unlabeled data
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Challenges of AD Models in Collider Physics

* A common model for AD in collider data is the autoencoder (AE) / variational AE (VAE)

“Autoencoder” Anomaly Score

R e -
- BT - //

1

Encode Decode

Data with outliers Learn to reconstruct the most Outliers are reconstructed poorly
abundant elements in dataset well

* Problem: AEs require a fixed length input — hard to provide low-level inputs

Collider events, at a fundamental level, can be described as an unordered collection of
particles represented by low-level detector objects (tracks, calorimeter clusters, etc.)

e This modeling 1s inherently variable in length and permutation invariant

This can be accommodated in AEs by zero-padding the inputs or via an RNN that
models inputs as a sequence, but introduces unnatural ordering/padding to the inputs
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e
Permutation Invariant Particle-Level AD

e There are subtle correlations in low-level detector signatures that we should exploit...

How can we gain the benefits of a semi-supervised approach for AD while using low-level

detector objects and maintaining the natural permutation invariance of collider events?

e We can use a supervised classifier to create an intelligent embedding of data

e This embedding should be fixed-length, preserve permutation invariance, and select
salient features of our data that can be exploited in an AD task

*  We then use this embedding as input to an AE/VAE architecture

Supervised,

Unsupervised

permutation invariant . .
Low-level inputs embedding AE/VAE —> Semi Szll;‘imsed

Fixed-length
output
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-
Particle Flow Network (1)

* One way to achieve this embedding is via a Particle Flow Network (PFN) architecture
e The PEN is a supervised classifier based on the the Deep Sets framework for point clouds

e The network takes 1n an arbitrary number of particles with features that are encoded
into a latent space, per-particle representation by a set of learned functions @,

» These per-particle representations are combined into event level observables O, that are
inherently permutation invariant by summing over all input particles

Particles Observable

Per—Particle Representation Event Representation

0,= Z @,(y;> ¢;» 2> PID;)

: — Latent Space :

/ ® - H s
=  These observables are fed to a network F
Hince EE o S @_ i that 1s optimized for binary classification

Y

Energy/Particle Flow Network
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https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1703.06114

-
Particle Flow Network (2)

Learned per-particle set representation ® Supervised classifier F

Q [ ]

0 Supervised
= PFN Score

Permutation symmetric combination O

O, = Zi ®,(vi, @i, 2i, PID;)

The PFN solves the problem of representing variable length unordered data by creating a
symmetric observables O, of an arbitrary number of particles with d features
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PFN-ID

Anomaly Detection on Particle Flow Latent Space

 The PFN embedding encodes key discriminating features learned by the supervised model
according to the signal & background priors

* These can be exploited to broaden the sensitivity beyond the trained signal model by
AD while keeping a low-level, symmetric input modeling

 We use the PFN latent variables to design a novel architecture titled ANTELOPE that
trains an unsupervised VAE on the O, and performs AD on the PFN’s latent space

O
Ci O ®, lolq

® VAE
(PSR B o e S
= Q cbO Q “O &&O o V0 L& | Anomaly score (AS) |
\ s O O b ,EO P ¥ o . = - . . determined from
O L o o @ e VAEloss |
\ PID b Pg ‘08 | . [
CS 8 ‘~ " ‘ “na - . =" —V
o Loss = MSE + KLD
Supervised + Unsupervised = ——>  Semi-Supervised
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-
LHC Olympics Dataset

e As proof of concept, we’ve applied the ANTELOPE model to the LHC Olympics dataset
e The dataset consists of 3 R&D and 3 black box samples

» Each event described as a set of up to 700 (massless) particle four vectors (pr, 17, @)

e R&D: QCD multyjet, 2-prong, and 3-prong

e Black boxes: 2-prong QCD multyet Resonance — Dijet/Trijet

(No signal)

R&D Signal Black Box 1 Black Box 3

my=100Gev 4 mx=732 GeV
Y X

mz=38TeV "

q g
X my=378 GeV X
mx =500 GeV q

mx=4.2 TeV
q q

mx=4.2 TeV ™,

q q Yy °
my=2.2 TeV
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https://lhco2020.github.io/homepage/

Inputs & Pre-Processing

*  We keep the 160 highest p; particles as inputs and use their p;, 7, @ as training features
e Each feature 1s normalized via Min-Max scaling between 0 and 1

e Events with less than 160 particles are zero-padded
* By design, the padding does not impact the performance of the PFN/VAE

1 Multijet QCD [__7 Black Box 1 1 Multijet QCD {__7 Black Box 1 10~ 1 1 Multijet QCD [__7 Black Box 1
. [ 1 Two-Prong [ Black Box 2 [ 1 Two-Prong [} Black Box 2 L [ 1 Two-Prong [ Black Box 2
1073 [ Three-Prong Black Box 3 10" 5 [ Three-Prong Black Box 3 H 1 Three-Prong Black Box 3
107341
2 10%; ﬁ = 1004 2 :
S Il S S
E 10 ERlR g 107
c : :
10_2 E 1072 E _ 10—9
10_3 : T T T T T T T 10_3 : T T T T T T T T T T T T E E i
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 0 500 1000 1500 2000 2500 3000
Particle ¢ Particle n Particle pr [GeV/c]
# of Events R&D QCD | R&D 2-prong | R&D 3-prong BB1 BB2 BB3
Signal N/A 100k 100k 834 N/A 1200 dijet / 2000 trijet
Total IM 100k 100k 1M M IM
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Training

 The PFN used to generate the embedding for ANTELOPE is trained on the 2-prong and
QCD R&D samples, with 80k events used from training and 20k for validation

 The VAE is trained on an orthogonal 80k events from QCD R&D meant to represent data,
where these events are first encoded into the PFN’s pre-trained O, basis before training

@ Train supervised PFN @ Embed events into @ Train VAE with

with 2-prong and QCD PFN’s latent space orthogonal QCD events
PFEFN Training ANTELOPE Training
—— Training Set —— Training Set

1.2 1 —— Validation Set 500 - —— Validation Set
1.01 400
2038 é 300
0.6 200 -
0.41 100 -

0 20 40 60 80 100 0 10 20 30 40 50
Epoch Epoch
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ANTELOPE Performance: Anomaly Score

* We assess ANTELOPE’s performance & model independence by comparing it to the
standalone, supervised PFN classifier

* We evaluate both ANTELOPE and the PFN on the validation samples from training, the
3-prong R&D dataset, as well as the signals in the black boxes

1 Multijet QCD U___1 Black Box 1 (Signal) 1 Multijet QCD T___1 Black Box 1 (Signal)
102 .50 Two-Prong T___7 Black Box 2 Lo? 01 Two-Prong T__77 Black Box 2
[ 1 Three-Prong Black Box 3 (Signal) [ 1 Three-Prong Black Box 3 (Signal)
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\ PFN Score Anomaly Score
Log of ANTELOPE’s output loss j

Softmaxed output of
PEN classifier transformed by a sigmoid
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ANTELOPE Performance: ROC & SIC Curves

True Positive Rate (TPR)

Receiver Operating Characteristic
PFN
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ANTELOPE Performance: ROC & SIC Curves
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PFN sensitivity still
best for 2/3-prong
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ANTELOPE Performance: ROC & SIC Curves
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ANTELOPE Performance: ROC & SIC Curves
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e
ANTELOPE Performance: Model Robustness

e We verified the robustness of the ANTELOPE approach by repeating these studies using
the three-prong R&D sample instead to train the PFN

* We observe similar trends in performance

* The PFN encoding can be varied to accommodate different signal priors

ANTELOPE still provides model independence and sensitivity beyond these priors
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-
Concluding Remarks

e We’ve developed a new semi-supervised architecture ANTELOPE that performs anomaly
detection on particle-level, unordered data by encoding the features into a PFN latent space

e ANTELOPE shows generalizability across many signal models assessed via LHCO dataset

* The network 1s able to exploit low-level correlations to be sensitive to the challenging
signal of BB3, where both dijjet and trijet decay modes must be found

e Different PEN embeddings can be employed for broad applications in BSM searches

Thank you!

Semi-supervised permutation invariant particle-level
anomaly detection
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-
LHC Olympics Dataset

e Sample definitions can be found in LHCO paper, R&D and black boxes Zenodo links

R&D Signal Black Box 1 Black Box 3

my=100Gev 4 mx=732 GeV
Y

X 7 mx=4.2 TeV\"‘u,

q q y °
my=2.2 TeV

‘~.«

L

mz=3.8 TeV

my=378 GeV

2-prong and 3-prong 2-prong KK Graviton — R(—gg) + ¢
m, = 3.5 TeV m, = 3.8 TeV my = 4.2 TeV
my = 500 GeV my = 732 GeV mp = 2.2TeV
my = 100 GeV my = 378 GeV KK Graviton — gg
my = 4.2 TeV

e QCD Multijet —» R&D: generated w/ Pythia, BB2: generated w/ Herwig & modified Delphes card
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https://arxiv.org/abs/2101.08320
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-
PFN Latent Space

* Another nice feature of the PFN embedding is that we can inspect the latent space vars.

» The latent space of the PFN is 64-dimensional — 64 individual O, distributions

O, Index

e These are plotted below, with all O, distributions scaled between 0 and 1

QCD Multijet

107!

1072

O, Index

1073

1074

Anomalous distributions in latent space w.r.t. both QCD and two-prong samples

Gabriel Matos, ML4Jets @ LPNHE, Paris

Two-Prong

19

Black Box 3 (Signal)

1071

1072

O, Index

1073

1073

0 1074
0.0 0.2 0.4 0.6 0.8 1.0

Value

November 7th, 2024



.
PEN Architecture Details

Learned per-particle set representation ® Superwsed classifier F
A
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Permutation symmetric combination O

Oa - Z'L Qa(yiagbi’ziaPIDi)

e First stage of the PFN has a 3-dimensional input of p;, 1, ¢ followed by two dense fully
connected layers of dimension 75 with an output dimension of 64 (1.e. the @)

e Each @, gets summed for the 160 input particles to derive the 64-dimensional O,

e The second stage of the PFN takes in the 64 O, as input, followed by 3 dense fully
connected layers of dimension 75, and 2-dimensional binary classifier output

e A cross-entropy loss is used for the training and model optimization
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e
ANTELOPE Architecture Details

O VAE
SN _ @
O 0 -0 @
Q<50 { @<
O { O
32
®w. 2 2.V
64 0 T===T 64

Loss = MSE + KLLD

e Takes in as input the 64-dimensional O, from a pre-trained PFN
 The VAE has a hidden layer of dimension 32, and latent layer of dimension 32

e A combination of the mean square error (MSE) and Kullback-Leibler divergence D1 are
used 1n the definition of the loss function

1 N
P = _ O.— 0|+ AD
N;:l,l i — Ol KL
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