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• Typically, collider searches follow a recipe 
1. Pick a model for some signature 
2. Determine relevant parameters for the model (mass ranges, etc.) 
3. Design selections on your observables to increase signal over background 

• Problem: way too many models/signatures to develop independent searches for! 
• How can we probe across many signatures w/out heavily relying on particular models?

Anomaly Detection
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• A common model for AD in collider data is the autoencoder (AE) / variational AE (VAE) 

• Problem: AEs require a fixed length input → hard to provide low-level inputs 
• Collider events, at a fundamental level, can be described as an unordered collection of 

particles represented by low-level detector objects (tracks, calorimeter clusters, etc.) 
• This modeling is inherently variable in length and permutation invariant 

• This can be accommodated in AEs by zero-padding the inputs or via an RNN that 
models inputs as a sequence, but introduces unnatural ordering/padding to the inputs

Challenges of AD Models in Collider Physics
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Data with outliers Learn to reconstruct the most 
abundant elements in dataset well

Outliers are reconstructed poorly
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• There are subtle correlations in low-level detector signatures that we should exploit… 

• We can use a supervised classifier to create an intelligent embedding of data 
• This embedding should be fixed-length, preserve permutation invariance, and select 

salient features of our data that can be exploited in an AD task 
• We then use this embedding as input to an AE/VAE architecture

Permutation Invariant Particle-Level AD
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How can we gain the benefits of a semi-supervised approach for AD while using low-level 
detector objects and maintaining the natural permutation invariance of collider events?
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• One way to achieve this embedding is via a Particle Flow Network (PFN) architecture 
• The PFN is a supervised classifier based on the the Deep Sets framework for point clouds 

• The network takes in an arbitrary number of particles with features that are encoded 
into a latent space, per-particle representation by a set of learned functions  

• These per-particle representations are combined into event level observables  that are 
inherently permutation invariant by summing over all input particles

Φa

𝒪a

Particle Flow Network (1)
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𝒪a = ∑
i

Φa(yi, ϕi, zi, PIDi)

• These observables are fed to a network  
that is optimized for binary classification

F
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Particle Flow Network (2)
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The PFN solves the problem of representing variable length unordered data by creating a 
symmetric observables  of an arbitrary number of particles with  features𝒪a d

Supervised  
PFN Score 
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• The PFN embedding encodes key discriminating features learned by the supervised model 
according to the signal & background priors  
• These can be exploited to broaden the sensitivity beyond the trained signal model by 

AD while keeping a low-level, symmetric input modeling 
• We use the PFN latent variables to design a novel architecture titled ANTELOPE that 

trains an unsupervised VAE on the  and performs AD on the PFN’s latent space𝒪a

Anomaly Detection on Particle Flow Latent Space
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VAE

Loss = MSE + KLD 

Supervised Unsupervised 

Anomaly score (AS) 
determined from 

VAE loss

Semi-Supervised + → 
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• As proof of concept, we’ve applied the ANTELOPE model to the LHC Olympics dataset 
• The dataset consists of 3 R&D and 3 black box samples 

• Each event described as a set of up to 700 (massless) particle four vectors  
• R&D: QCD multijet, 2-prong, and 3-prong 
• Black boxes:           2-prong              QCD multijet              Resonance → Dijet/Trijet

(pT, η, ϕ)

LHC Olympics Dataset
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BB1 BB2 BB3
(No signal)
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https://lhco2020.github.io/homepage/


• We keep the 160 highest  particles as inputs and use their  as training features 
• Each feature is normalized via Min-Max scaling between 0 and 1 
• Events with less than 160 particles are zero-padded 

• By design, the padding does not impact the performance of the PFN/VAE

pT pT, η, ϕ

Inputs & Pre-Processing
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• The PFN used to generate the embedding for ANTELOPE is trained on the 2-prong and 
QCD R&D samples, with 80k events used from training and 20k for validation 

• The VAE is trained on an orthogonal 80k events from QCD R&D meant to represent data, 
where these events are first encoded into the PFN’s pre-trained  basis before training𝒪a

Training
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• We assess ANTELOPE’s performance & model independence by comparing it to the 
standalone, supervised PFN classifier 
• We evaluate both ANTELOPE and the PFN on the validation samples from training, the 

3-prong R&D dataset, as well as the signals in the black boxes

ANTELOPE Performance: Anomaly Score
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ANTELOPE Performance: ROC & SIC Curves
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ANTELOPE Performance: ROC & SIC Curves
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• We verified the robustness of the ANTELOPE approach by repeating these studies using 
the three-prong R&D sample instead to train the PFN 

• We observe similar trends in performance 
• The PFN encoding can be varied to accommodate different signal priors

ANTELOPE Performance: Model Robustness
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ANTELOPE still provides model independence and sensitivity beyond these priors



• We’ve developed a new semi-supervised architecture ANTELOPE that performs anomaly 
detection on particle-level, unordered data by encoding the features into a PFN latent space 

• ANTELOPE shows generalizability across many signal models assessed via LHCO dataset 
• The network is able to exploit low-level correlations to be sensitive to the challenging 

signal of BB3, where both dijet and trijet decay modes must be found 
• Different PFN embeddings can be employed for broad applications in BSM searches

Concluding Remarks
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Thank you!

arXiv: 2408.17409

*ChatGPT’s interpretation 
of ANTELOPE

http://www.apple.com


Backup



• Sample definitions can be found in LHCO paper, R&D and black boxes Zenodo links 

• QCD Multijet → R&D: generated w/ Pythia, BB2: generated w/ Herwig & modified Delphes card

LHC Olympics Dataset
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2-prong and 3-prong 
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• Another nice feature of the PFN embedding is that we can inspect the latent space vars. 

• The latent space of the PFN is 64-dimensional → 64 individual  distributions 

• These are plotted below, with all  distributions scaled between 0 and 1

𝒪a

𝒪a

PFN Latent Space
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Anomalous distributions in latent space w.r.t. both QCD and two-prong samples



• First stage of the PFN has a 3-dimensional input of  followed by two dense fully 
connected layers of dimension 75 with an output dimension of 64 (i.e. the ) 

• Each  gets summed for the 160 input particles to derive the 64-dimensional  

• The second stage of the PFN takes in the 64  as input, followed by 3 dense fully 
connected layers of dimension 75, and 2-dimensional binary classifier output 

• A cross-entropy loss is used for the training and model optimization

pT, η, ϕ
Φa

Φa 𝒪a

𝒪a

PFN Architecture Details
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75 75 75 75 75

…

64 64

…






pT
η
ϕ

160 ×



• Takes in as input the 64-dimensional  from a pre-trained PFN 

• The VAE has a hidden layer of dimension 32, and latent layer of dimension 32 

• A combination of the mean square error (MSE) and Kullback-Leibler divergence  are 
used in the definition of the loss function

𝒪a

DKL

ANTELOPE Architecture Details
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VAE

Loss = MSE + KLD 
64

32
32

32

64

ℒ =
1
N

N

∑
i=1

|𝒪i − 𝒪′ i | + λDKL


