Zichun Hao, Raghav Kansal, Javier Duarte, Nadezda Chernyavskaya

Lorentz Group Equivariant Autoencoders [ML4Jets2024](https://indico.cern.ch/event/1386125/) November 7, LPNHE, Paris, France

Hao, Z., Kansal, R., Duarte, J. *et al.* Lorentz group equivariant autoencoders. *Eur. Phys. J. C* **83**, 485 (2023). <https://doi.org/10.1140/epjc/s10052-023-11633-5>, [arXiv:2212.07347](https://arxiv.org/abs/2212.07347)

Outline

- Overview
- Experimental Results
- Conclusion

Overview

• In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance in terms of **performance**,

- **interpretability**, and **data efficiency**.
	- The self-attention mechanism gives rise to transformers.

Embedding Inductive Biases For Natural Languages

Embedding Inductive Biases For HEP

• What about HEP data like jets?

• One possible answer: graph neural networks (GNNs)

Graph Neural Networks In HEP

- GNNs add **inductive biases and symmetries** into the neural network.
	- Mimics the structure of data in HEP: nodes as particles and edges as interactions.
	- Permutational symmetry: graphs have no sense of ordering.
	- Example: ParticleNet [[arXiv:1902.08570](https://arxiv.org/abs/1902.08570)] achieved by-then SOTA performance on jet tagging benchmarks.
- Another fundamental symmetry in HEP: (*approximate*) Lorentz group symmetry.
	- Example: LorentzNet [\[arXiv:2201.08187](https://arxiv.org/abs/2201.08187)] and PELICAN [\[arXiv:2307.16506](https://arxiv.org/abs/2307.16506)] show the advantages by achieving SOTA performance on jet tagging benchmarks.
	- An ablation study [\[arXiv:2208.07814](https://arxiv.org/pdf/2208.07814)] done to demonstrate the benefits of Lorentz-symmetry preservation even with detector effects

Lorentz Group Equivariant Autoencoder (LGAE) Lorentz Group Network [arXiv: [2006.04780](https://arxiv.org/abs/2006.04780)]

- Work on the irreducible representations (**irreps**) of the Lorentz group.
	- Examples: Lorentz scalars (e.g. mass) and 4-vectors (e.g. 4-momentum)
	- Input physical quantities and all intermediate features transform properly under the corresponding Lorentz transformation.
- **Graph** structure
	- Nodes as particles.
	- Edges as mutual and self interactions.

Lorentz Group Network Lorentz Group Equivariant Message Passing (LMP) Layers

 * Each (m,n) irrep space in $\widetilde{\mathscr{F}}_{i}^{(t)}$ contains $\tau_{(m,n)}^{(t)}$ channels (similar idea with CNNs)

Lorentz Group Equivariant Autoencoder (LGAE) Architecture

Lorentz Group Equivariant Autoencoder (LGAE) Autoencoders as Anomaly Detectors

- Trained to reconstruct background data.
- The autoencoder has **never** seen signal data.
	- Expect a **worse** reconstruction performance.
	- Use the reconstruction score (e.g. MSE) as an anomaly metric.
- Example: AXOL1TL (Level-1 Trigger at the CMS Experiment)

Experimental Results

Experiment

Description Settings

- [JetNet](https://zenodo.org/record/6975118) dataset (Detailed description: [https://jet-net.github.io/jetnet/\)](https://jet-net.github.io/jetnet/)
	- category.
- Training data: gluon and light quark jets (QCD) from the JetNet dataset.
- Signal jets for anomaly detection: top quark, W boson, and Z boson jets.
- Baseline models
	- [\[arXiv:2012.00173\]](https://arxiv.org/abs/2012.00173) and [\[arXiv:2111.12849\]](https://arxiv.org/abs/2111.12849)
	- Convolutional neural network autoencoder (CNNAE)

• Gluon, top quark, light quark, W boson, and Z boson jets with $\mathcal{O}(1 \text{ TeV})$ transverse momentum, produced in $13 \,\mathrm{TeV}$ proton-proton collisions in a simplified detector, with 170k-180k jets per

• Fully connected message-passing, graph neural network autoencoder (GNNAE) adapted from

Model Baseline: GNNAE

• Fully connected message passing graph neural network adapted from [arXiv:2012.00173](https://arxiv.org/abs/2012.00173)

• Aggregation

- Jet-level (**GNNAE-JL**): mean aggregation
	- Permutation invariant
- Particle-level (**GNNAE-PL**): node-wise linear mixing, based on high-performing PGAE network [[arXiv:2111.12849\]](https://arxiv.org/abs/2111.12849)
	- Permutation equivariant

GitHub Repo:<https://github.com/zichunhao/gnn-jet-autoencoder> 14

Summary of Equivariance of Selected Models Model

Reconstruction Particle- and Jet-Level Features

LGAE-Mix has the best reconstruction performance in terms of the particle- and jet-level feature distribution

Reconstruction Quantitative Measures

τĐ,

95

Anomaly Detection Tagging All Signals (Top, W, and Z Combined)

Latent Space Analysis Distributions of Derived Quantities

The representations are Lorentz

Data Efficiency Generalizability: What If We Train the Model with Less Data?

Conclusion

Conclusion Takeaways and Next Steps

- Adding inductive biases and symmetry has shown to improve NNs in terms of performance, interpretability, and data efficiency.
- We embedded **Lorentz symmetry** into an autoencoder.
- LGAE-Mix model has a **better performance** in **reconstruction** and **anomaly detection** (in a HEP context) than the baseline GNNAEs.
- The LGAEs have a **promising interpretability** in latent space and more data efficient.
- Possible future works: further latent space analysis and LorentzNet-based autoencoders.

Conclusion Funding Acknowledgement

• This work was supported by **US DOE** (No. DE-AC02-07CH11359, No. DE-SC0021187, and No. DE-SC0021396), **US NSF** (OAC-2117997), and the

European Research Council (Grant Agreement No. 772369).

Backup

Lorentz Group Irreducible Representations for Small (*j* + , *j* −)

Model Graph Neural Networks

$p = [E, p_x, p_y, p_z] \equiv [p_T, \eta, \phi, m]$

- $G = \{V, E\}$, possibly with global features • Node features v_i : particle 4-momentum
	- Edge features **e***ij*

- distance between particles
- interactions between particles

• Graph (global) features u: jet mass

27

Embedding Lorentz Group Symmetry Model

- Method: **equivariance** with respect to the Lorentz group.
- Common approaches of achieving equivariance
	- Group convolutional kernels: generalization of CNN.
	- Fourier space: decomposition into **irreducible representations** (irreps).
- Advantages of achieving equivariance
	- Data efficiency
	- Interpretability

Model Choices of Aggregation in LGAE

- Linear mixing (LGAE-Mix): concatenate nodes and linearly mix.
	- **Note**: We are imposing a specific order, so it breaks the permutation symmetry.
- Max/Min/Mean pooling.
	- Min/Max with respect to the Lorentz scalars.
	- Can concatenate these, such as min⊕max and min⊕max⊕mean.

Experiment Settings

- Loss functions
	- LGAE-Mix, GNNAE-PL, and CNNAE: MSE
	- LGAE-Min-Max and GNNAE-PL: C $\mathscr{L}_{\text{chamfer}}(J_1, J_2) = \sum$ $p_1 \in J_1$ min p_2 ∈ J_2 $|p_1 - p_2|$
	- Alternatives
		-
		- Hungarian loss (our implementation [here](https://github.com/zichunhao/lgn-autoencoder/blob/main/utils/losses/hungarian_mse/hungarian_mse.py)): difficult to converge.

• Energy mover distance (EMD) [[arXiv:1902.02346](https://arxiv.org/abs/1902.02346)]: difficult computationally.

Chapter loss

\n
$$
-p_2\vert^2 + \sum_{p_2 \in J_2} \min_{p_1 \in J_1} |p_1 - p_2|^2.
$$

LGAE Parameters Experiment

• Parameters to optimize: $\tau_{(m,n)}$ of each layer and the latent space.

• **Encoder:**
$$
\{\tau_{(m,n)}^{(t)}\}_{t=1}^4 = (3,3,4,4).
$$

- Aggregation: {min-max, mix}.
- Latent space dimension
	- $\tau_{(0,0)} = 1$
	- $\tau_{(1/2,1/2)} \in \{1,...,14\}$
- Decoder: $\{\tau_{(m,n)}^{(t)}\}_{t=1}^4 = (3,3,4,4)$. (*m*,*n*) ${3 \choose t}$ $_{t=1}^{4} = (3,3,4,4)$

Experiment

33

Experiment Anomaly Detection: Top Tagging

LGAEs have better ε _s at low ε _{*b*}

Experiment Anomaly Detection: W Tagging

LGAEs have better ε _s at low ε _{*b*}

35

Experiment Anomaly Detection: Z Tagging

Experiment Anomaly Detection: ParticleNet

37

Not as good as the SOTA **supervised** model, as expected

Experiment Latent Space Analysis: Correlations

Model: LGAE-Mix with 2 latent 4-vectors

No other strong correlations found **No asset and Possibly new useful quantities?**

Jet 3-momentum encoded in the total latent 4-vector