Lorentz Group Equivariant Autoencoders ML4Jets2024 November 7, LPNHE, Paris, France

Hao, Z., Kansal, R., Duarte, J. *et al.* Lorentz group equivariant autoencoders. *Eur. Phys. J. C* 83, 485 (2023). https://doi.org/10.1140/epjc/s10052-023-11633-5, arXiv:2212.07347

Zichun Hao, Raghav Kansal, Javier Duarte, Nadezda Chernyavskaya

Outline

- Overview
- Experimental Results
- Conclusion

Overview

Embedding Inductive Biases For Natural Languages

- interpretability, and data efficiency.
 - The self-attention mechanism gives rise to transformers.

Ŧ	<u>.</u>	. <u>C</u>	this	spirit	that	IJ	majority	of	American	governments	have	passed
Ŧ	<u>S</u>	Ë	this	spirit	that	IJ	majority	of	American	governments	have	passed

• In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance in terms of performance,

Embedding Inductive Biases For HEP

• What about HEP data like jets?

• One possible answer: graph neural networks (GNNs)

Graph Neural Networks In HEP

- GNNs add inductive biases and symmetries into the neural network.
 - Mimics the structure of data in HEP: nodes as particles and edges as interactions.
 - Permutational symmetry: graphs have no sense of ordering.
 - Example: ParticleNet [arXiv:1902.08570] achieved by-then SOTA performance on jet tagging benchmarks.
- Another fundamental symmetry in HEP: (approximate) Lorentz group symmetry.
 - Example: LorentzNet [arXiv:2201.08187] and PELICAN [arXiv:2307.16506] show the advantages by achieving SOTA performance on jet tagging benchmarks.
 - An ablation study [arXiv:2208.07814] done to demonstrate the benefits of Lorentz-symmetry
 preservation even with detector effects

Lorentz Group Equivariant Autoencoder (LGAE) Lorentz Group Network [arXiv: 2006.04780]

- Work on the irreducible representations (irreps) of the Lorentz group.
 - Examples: Lorentz scalars (e.g. mass) and 4-vectors (e.g. 4-momentum)
 - Input physical quantities and all intermediate features transform properly under the corresponding Lorentz transformation.
- **Graph** structure
 - Nodes as particles.
 - Edges as mutual and self interactions.

Lorentz Group Network Lorentz Group Equivariant Message Passing (LMP) Layers

* Each (m, n) irrep space in $\mathscr{F}_i^{(t)}$ contains $\tau_{(m,n)}^{(t)}$ channels (similar idea with CNNs)

Lorentz Group Equivariant Autoencoder (LGAE) **Architecture**

Lorentz Group Equivariant Autoencoder (LGAE) **Autoencoders as Anomaly Detectors**

- Trained to reconstruct background data.
- The autoencoder has **never** seen signal data.
 - Expect a worse reconstruction performance.
 - Use the reconstruction score (e.g. MSE) as an anomaly metric.
- Example: AXOL1TL (Level-1 Trigger at the CMS Experiment)

Experimental Results

Experiment

Description Settings

- JetNet dataset (Detailed description: https://jet-net.github.io/jetnet/)
 - category.
- Training data: gluon and light quark jets (QCD) from the JetNet dataset.
- Signal jets for anomaly detection: top quark, W boson, and Z boson jets.
- Baseline models
 - [arXiv:2012.00173] and [arXiv:2111.12849]
 - Convolutional neural network autoencoder (CNNAE)

• Gluon, top quark, light quark, W boson, and Z boson jets with $\mathcal{O}(1 \,\text{TeV})$ transverse momentum, produced in 13 TeV proton-proton collisions in a simplified detector, with 170k-180k jets per

• Fully connected message-passing, graph neural network autoencoder (GNNAE) adapted from

Model **Baseline: GNNAE**

GitHub Repo: https://github.com/zichunhao/gnn-jet-autoencoder

• Fully connected message passing graph neural network adapted from arXiv:2012.00173

Aggregation

- Jet-level (GNNAE-JL): mean aggregation
 - Permutation invariant \bullet
- Particle-level (GNNAE-PL): node-wise linear mixing, based on high-performing PGAE network [arXiv:2111.12849]
 - Permutation equivariant

Model Summary of Equivariance of Selected Models

Model	Aggregation	Model's Name	Lorentz Symmetry	Permutation Symmetry	
LGAE	Mix	LGAE-Mix	√ (equivariance)	×	
	Min⊕Max	LGAE-Min-Max	√ (equivariance)	√ (invariance)	
GNNAE	Particle level	GNNAE-PL	X	√ (equivariance)	
	Jet level	GNNAE-JL	X	√ (invariance)	

Reconstruction Particle- and Jet-Level Features

LGAE-Mix has the best reconstruction performance in terms of the particle- and jet-level feature distribution

Reconstruction Quantitative Measures

Model	Aggregation	Latent snace	Jet mass		Jet $p_{\rm T}$		Jet η		Jet ϕ	
	Aggregation	Latent space	Median	IQR	Median	IQR	Median	IQR	Median	IQR
LGAE	Min-max	$ au_{(1/2,1/2)} = 4 (56.67\%)$ $ au_{(1/2,1/2)} = 7 (96.67\%)$	0.096 -0.139	0.134 0.287	0.097 -0.221	0.109 0.609	$< 10^{-3} < 10^{-3}$	0.004 0.021	$< 10^{-3} < 10^{-3}$	0.002 0.007
	Mix	$ au_{(1/2,1/2)} = 9 \ (61.67\%)$ $ au_{(1/2,1/2)} = 13 \ (88.33\%)$	$< 10^{-3} < 10^{-3}$	0.003 0.003	$< 10^{-3} < 10^{-3}$	$< 10^{-3} < 10^{-3}$	$< 10^{-3} < 10^{-3}$	$< 10^{-3} < 10^{-3}$	$< 10^{-3} < 10^{-3}$	$< 10^{-3} < 10^{-3}$
Je GNNAE Pa	Jet-level	dim(L) = 45 (50.00%) $dim(L) = 90 (100.00%)$	0.326 3.7	0.667 2.6	0.030 0.030	0.088 0.089	$0.005 \\ 0.292$	0.040 0.433	<i>0.001</i> 0.006	0.021 0.021
	Particle-level	$dim(L) = 2 \times 30 (66.67\%)$ $dim(L) = 3 \times 30 (100.00\%)$	0.277 0.339	0.299 0.244	0.037 0.050	0.110 <i>0.094</i>	0.002 -0.001	<i>0.010</i> 0.011	-0.001 < 10 ⁻³	$0.005 \\ 0.005$
CNNAE	Linear layer	$\dim(L) = 55 \ (61.67\%)$	-0.030	0.042	-0.021	0.017	< 10 ⁻³	0.017	$< 10^{-3}$	0.003

 $e^{2r_{1}}$, $e^{-r_{2}}$

in.

 $\mathcal{O}_{\mathcal{M}}$

Anomaly Detection Tagging All Signals (Top, W, and Z Combined)

Latent Space Analysis **Distributions of Derived Quantities**

The representations are Lorentz scalars and 4-vectors!

Data Efficiency Generalizability: What If We Train the Model with Less Data?

Conclusion

Conclusion Takeaways and Next Steps

- Adding inductive biases and symmetry has shown to improve NNs in terms of performance, interpretability, and data efficiency.
- We embedded Lorentz symmetry into an autoencoder.
- LGAE-Mix model has a better performance in reconstruction and anomaly detection (in a HEP context) than the baseline GNNAEs.
- The LGAEs have a promising interpretability in latent space and more data efficient.
- Possible future works: further latent space analysis and LorentzNet-based autoencoders.

Conclusion **Funding Acknowledgement**

European Research Council (Grant Agreement No. 772369).

• This work was supported by US DOE (No. DE-AC02-07CH11359, No. DE-SC0021187, and No. DE-SC0021396), US NSF (OAC-2117997), and the

Backup

Lorentz Group Irreducible Representations for Small (j^+, j^-)

• Classified by two half integers: (j^+, j^-) .

	$j^+ = 0$	٩
$j^{-} = 0$	Scalar Dimension: 1	Left- Di
$j^- = \frac{1}{2}$	Right-handed Weyl spinor Dimension: 2	Di
$j^{-} = 1$	Anti-self-dual 4- form Dimension: 3	Di
$j^- = \frac{3}{2}$	Dimension: 4	Di

 $i^{+} = 1$ handed Weyl Self-dual 4-form Dimension: 4 spinor Dimension: 3 mension: 2 4-vector Dimension: 6 Dimension: 8 imension: 4 **Traceless** Dimension: 12 imension: 6 symmetric tensor **Dimension: 9** Dimension: 12 Dimension: 16 imension: 8

Model Graph Neural Networks

$p = [E, p_x, p_y, p_z] \equiv [p_T, \eta, \phi, m]$

- G = {V, E}, possibly with global features
 Node features v_i: particle 4-momentum
 - Edge features e_{ii}
 - distance between particles
 - interactions between particles

Graph (global) features u: jet mass

Model Embedding Lorentz Group Symmetry

- Method: equivariance with respect to the Lorentz group.
- Common approaches of achieving equivariance
 - Group convolutional kernels: generalization of CNN.
 - Fourier space: decomposition into irreducible representations (irreps).
- Advantages of achieving equivariance
 - Data efficiency
 - Interpretability

Model **Choices of Aggregation in LGAE**

- Linear mixing (LGAE-Mix): concatenate nodes and linearly mix.
 - Note: We are imposing a specific order, so it breaks the permutation symmetry.
- Max/Min/Mean pooling.
 - Min/Max with respect to the Lorentz scalars.
 - Can concatenate these, such as min \oplus max and min \oplus max \oplus mean.

Experiment Settings

- Loss functions
 - LGAE-Mix, GNNAE-PL, and CNNAE: MSE
 - LGAE-Min-Max and GNNAE-PL: C
 - Alternatives

 - Hungarian loss (our implementation here): difficult to converge.

Chamfer loss

$$p_2|^2 + \sum_{\substack{p_2 \in J_2 \\ p_2 \in J_2}} \min_{\substack{p_1 \in J_1 \\ p_1 \in J_1}} |p_1 - p_2|^2.$$

• Energy mover distance (EMD) [arXiv:1902.02346]: difficult computationally.

Experiment **LGAE** Parameters

• Parameters to optimize: $\tau_{(m,n)}$ of each layer and the latent space.

• Encoder:
$$\{\tau_{(m,n)}^{(t)}\}_{t=1}^4 = (3,3,4,4).$$

- Aggregation: {min-max, mix}.
- Latent space dimension
 - $\tau_{(0,0)} = 1$
 - $\tau_{(1/2,1/2)} \in \{1,\ldots,14\}$
- Decoder: $\{\tau_{(m,n)}^{(t)}\}_{t=1}^4 = (3,3,4,4).$

Experiment

Experiment

Experiment Anomaly Detection: Top Tagging

LGAEs have better ε_s at low ε_b

b	
. –	

Experiment Anomaly Detection: W Tagging

LGAEs have better ε_s at low ε_b

35

Experiment Anomaly Detection: Z Tagging

Ь				
Ь				 _
Ь			ł	
<i>b</i>				
b				
b				
			ļ	
	b			
	_			
				•
		-		
			ļ	
			/	

Experiment Anomaly Detection: ParticleNet

Not as good as the SOTA supervised model, as expected

37

Experiment Latent Space Analysis: Correlations

Model: LGAE-Mix with 2 latent 4-vectors

No other strong correlations found

Jet 3-momentum encoded in the total latent 4-vector

Possibly new useful quantities?

38

