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Overview



• In deep learning, tailoring algorithms to the structure (and symmetries) of the 
data has led to groundbreaking performance in terms of performance, 
interpretability, and data efficiency.


• The self-attention mechanism gives rise to transformers.

Embedding Inductive Biases
For Natural Languages
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Attention Visualizations
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Figure 3: An example of the attention mechanism following long-distance dependencies in the
encoder self-attention in layer 5 of 6. Many of the attention heads attend to a distant dependency of
the verb ‘making’, completing the phrase ‘making...more difficult’. Attentions here shown only for
the word ‘making’. Different colors represent different heads. Best viewed in color.
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Embedding Inductive Biases
For HEP
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• What about HEP data like jets?

• One possible answer: graph neural networks (GNNs)



Graph Neural Networks
In HEP
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• GNNs add inductive biases and symmetries into the neural network.


• Mimics the structure of data in HEP: nodes as particles and edges as interactions.


• Permutational symmetry: graphs have no sense of ordering.


• Example: ParticleNet [arXiv:1902.08570] achieved by-then SOTA performance on jet 
tagging benchmarks.


• Another fundamental symmetry in HEP: (approximate) Lorentz group symmetry.


• Example: LorentzNet [arXiv:2201.08187] and PELICAN [arXiv:2307.16506] show the 
advantages by achieving SOTA performance on jet tagging benchmarks.


• An ablation study [arXiv:2208.07814] done to demonstrate the benefits of Lorentz-symmetry 
preservation even with detector effects

https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/2201.08187
https://arxiv.org/abs/2307.16506
https://arxiv.org/pdf/2208.07814


Lorentz Group Equivariant Autoencoder (LGAE)
Lorentz Group Network [arXiv: 2006.04780]

• Work on the irreducible representations (irreps) of the Lorentz group.


• Examples: Lorentz scalars (e.g. mass) and 4-vectors (e.g. 4-momentum)


• Input physical quantities and all intermediate features transform properly under 
the corresponding Lorentz transformation.


• Graph structure


• Nodes as particles.


• Edges as mutual and self interactions.
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https://arxiv.org/abs/2006.04780


ℱ(t+1)
i = MixReps ℱ(t)

i ⊕ CG [(ℱ(t)
i )

⊗2] ⊕ CG ∑
j≠i

f(p2
ij)pij ⊗ ℱ(t)

j .

Lorentz Group Network
Lorentz Group Equivariant Message Passing (LMP) Layers

Self interaction Mutual interaction

Clebsch-Gordan 
decomposition pij ≡ pi − pj

New node feature

Linear mixing 
(Only mixing features from the 
same representation space)
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Old node features*

* Each  irrep space in  contains  channels (similar idea with CNNs)(m, n) ℱ(t)
i τ(t)

(m,n)



Lorentz Group Equivariant Autoencoder (LGAE)
Architecture

Aggregation

Input features

Encoder

LMP LMP LMP LMP

Decoder

LMP LMP LMP LMP Reconstructed features

Latent space features

Composed of irreps, such as 
scalars and 4-vectors
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Jet-level: linear mixing, min, max, 
and mean, or concatenation of 
{min, max, mean} (all based on 

Lorentz invariant quantities of the 
features) 

Applications: compressions, anomaly 
detections, data generations (if adapted 

to variational autoencoders), etc. 



Lorentz Group Equivariant Autoencoder (LGAE)
Autoencoders as Anomaly Detectors
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• Trained to reconstruct background data.


• The autoencoder has never seen signal data.


• Expect a worse reconstruction performance.


• Use the reconstruction score (e.g. MSE) as an anomaly metric.


• Example: AXOL1TL (Level-1 Trigger at the CMS Experiment)



Experimental Results



Experiment
Lorentz Group Equivariance Test
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mean
p ∈ J

μ∈{0,1,2,3}
( LGAE(Λμ

ν pν) − Λμ
νLGAE(p)ν

Λμ
νLGAE(p)ν )

We expect LGAE(Λμ
νpν) = Λμ

νLGAE(pν)

Equivariant up to numerical errorsv = 0.9999999917553856c



Description
Settings

• JetNet dataset (Detailed description: https://jet-net.github.io/jetnet/)


• Gluon, top quark, light quark, W boson, and Z boson jets with  transverse momentum, 
produced in  proton-proton collisions in a simplified detector, with 170k-180k jets per 
category.


• Training data: gluon and light quark jets (QCD) from the JetNet dataset.


• Signal jets for anomaly detection: top quark, W boson, and Z boson jets.


• Baseline models


• Fully connected message-passing, graph neural network autoencoder (GNNAE) adapted from 
[arXiv:2012.00173] and [arXiv:2111.12849]


• Convolutional neural network autoencoder (CNNAE)

𝒪(1 TeV)
13 TeV
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https://zenodo.org/record/6975118
https://jet-net.github.io/jetnet/
https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2111.12849


Model
Baseline: GNNAE

• Fully connected message passing graph 
neural network adapted from arXiv:2012.00173


• Aggregation


• Jet-level (GNNAE-JL): mean aggregation


• Permutation invariant


• Particle-level (GNNAE-PL): node-wise linear 
mixing, based on high-performing PGAE 
network [arXiv:2111.12849]


• Permutation equivariant
NodeNet

EdgeNet

Node embeddings

14GitHub Repo: https://github.com/zichunhao/gnn-jet-autoencoder 

https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2111.12849
https://github.com/zichunhao/gnn-jet-autoencoder


Summary of Equivariance of Selected Models
Model

Model Aggregation Model’s Name Lorentz Symmetry Permutation 
Symmetry

LGAE

Mix LGAE-Mix ✓ (equivariance) ✗

Min⊕Max LGAE-Min-Max ✓ (equivariance) ✓ (invariance)

GNNAE

Particle level GNNAE-PL ✗ ✓ (equivariance)

Jet level GNNAE-JL ✗ ✓ (invariance)
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Reconstruction
Particle- and Jet-Level Features

Compression level ≈ 60 %
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LGAE-Mix has the best reconstruction 
performance in terms of the particle- and 

jet-level feature distribution



Reconstruction
Quantitative Measures
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Table 3 Median and IQR of relative errors in jet feature reconstruction by selected LGAE and GNNAE models, along with the CNNAE model. In
each column, the best performing latent space per model is italicised, and the best model overall is highlighted in bold.

Model Aggregation Latent space Jet mass Jet 𝐿T Jet 𝑀 Jet 𝑁
Median IQR Median IQR Median IQR Median IQR

LGAE
Min-max 𝑂(1/2,1/2) = 4 (56.67%) 0.096 0.134 0.097 0.109 < 10

→3
0.004 < 10

→3
0.002

𝑂(1/2,1/2) = 7 (96.67%) →0.139 0.287 →0.221 0.609 < 10
→3 0.021 < 10

→3 0.007

Mix 𝑂(1/2,1/2) = 9 (61.67%) < 10
→3

0.003 < 10
→3 < 10

→3 < 10
→3 < 10

→3 < 10
→3 < 10

→3

𝑂(1/2,1/2) = 13 (88.33%) < 10
→3

0.003 < 10
→3 < 10

→3 < 10
→3 < 10

→3 < 10
→3 < 10

→3

GNNAE
Jet-level dim(𝑃) = 45 (50.00%) 0.326 0.667 0.030 0.088 0.005 0.040 0.001 0.021

dim(𝑃) = 90 (100.00%) 3.7 2.6 0.030 0.089 0.292 0.433 0.006 0.021

Particle-level dim(𝑃) = 2 ↑ 30 (66.67%) 0.277 0.299 0.037 0.110 0.002 0.010 →0.001 0.005
dim(𝑃) = 3 ↑ 30 (100.00%) 0.339 0.244 0.050 0.094 →0.001 0.011 < 10

→3 0.005

CNNAE Linear layer dim(𝑃) = 55 (61.67%) →0.030 0.042 →0.021 0.017 < 10
→3 0.017 < 10

→3 0.003

Receiver operating characteristic (ROC) curves showing
the signal e!ciencies (𝐿𝑄) versus background e!ciencies
(𝐿𝑅) for individual and combined signals are shown in Fig. 4,!
and 𝐿𝑄 values at particular background e!ciencies are given
in Table 4. We see that in general the permutation equiv-
ariant LGAE and GNNAE models outperform the CNNAE,
strengthening the case for considering equivariance in neu-
ral networks. Furthermore, LGAE models have significantly
higher signal e!ciencies than GNNAEs and CNNAEs for all
signals when rejecting > 90% of the background (which is the
minimum level we typically require in HEP), and LGAE-Mix
consistently performs better than LGAE-Min-Max.

4.5 Latent space interpretation

The outputs of the LGAE encoder are irreducible representa-
tions of the Lorentz groups; they consist of a pre-specified
number of Lorentz scalars, vectors, and potentially higher-
order representations. This implies a significantly more in-
terpretable latent representation of the jets than traditional
autoencoders, as the information distributed across the latent
space is now disentangled between the di"erent irreps of
the Lorentz group. For example, scalar quantities like the jet
mass will necessarily be encoded in the scalars of the latent
space, and jet and particle 4-momenta in the vectors.

We demonstrate the latter empirically on the LGAE-Mix
model (𝑀(1/2,1/2) = 2) by looking at correlations between jet
4-momenta and the components of di"erent combinations of
latent vector components. Figure 5 shows that, in fact, the jet
momenta is encoded in the imaginary component of the sum
of the latent vecotrs.

We can also attempt to understand the anomaly detection
performance by looking at the encodings of the training data
compared to the anomalous signal. Figure 6 shows the indi-
vidual and total invariant mass of the latent vectors of sample

!Discontinuities in the top quark and combined signal LGAE-Min-Max
ROCs indicate that at background e!ciencies of ↭ 5 ↑ 10→3, there are
no signal events remaining in the validation dataset.

LGAE models for QCD and top quark, W boson, and Z boson
inputs. We observe that despite the overall similar kinematic
properties of the di"erent jet classes, the distributions for the
QCD background are significantly di"erent from the signals,
indicating that the LGAE learns and encodes the di"erence in
jet substructure — despite substructure observables such as
jet mass not being direct inputs to the network — explaining
the high performance in anomaly detection.

Finally, while in this section we showcased simple “brute-
force” techniques for interpretability by looking directly at
the distributions and correlations of latent features, we hy-
pothesize that such an equivariant latent space would also
lend itself e"ectively to the vast array of existing explainable
AI algorithms [80, 81], which generically evaluate the contri-
bution of di"erent input and intermediate neuron features to
network outputs. We leave a detailed study of this to future
work.

4.6 Data e!ciency

In principle, equivariant neural networks should require less
training data for high performance, since critical biases of
the data, which would otherwise have to be learnt by non-
equivariant networks, are already built in. We test this claim
by measuring the performances of the best-performing LGAE
and CNNAE architectures from Sec. 4.3 trained on varying
fractions of the training data.

The median magnitude of the relative errors between the
reconstructed and true jet masses of the di"erent models
and fractions is shown in Fig. 7. Each model is trained five
times per training fraction, with di"erent random seeds, and
evaluated on the same-sized validation dataset; the median of
the five models is plotted. We observe that, in agreement with
our hypothesis, the LGAE models both maintain their high
performance all the way down to training on 1% of the data,
while the CNNAE’s performance steadily degrades down to
2% and then experiences a further sharp drop.

17



Reconstruction
Reconstruction of Jet Images Compression level ≈ 60 %
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Symmetry is respected even though 
reconstruction is not ideal



Anomaly Detection
Tagging All Signals (Top, W, and Z Combined)
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LGAEs have better  at given ’sεs εb

Score: MSE



Latent Space Analysis
Distributions of Derived Quantities

Possibly why top tagging has 
the best ROC curve 20

The representations are Lorentz 
scalars and 4-vectors!



Data Efficiency
Generalizability: What If We Train the Model with Less Data?

δ =
Mreco − Mtrue

Mtrue

21

Normalized by the error with 
100% training dataset

 training jets𝒪(10)



Conclusion



Conclusion
Takeaways and Next Steps

• Adding inductive biases and symmetry has shown to improve NNs in terms of 
performance, interpretability, and data efficiency.


• We embedded Lorentz symmetry into an autoencoder.


• LGAE-Mix model has a better performance in reconstruction and anomaly 
detection (in a HEP context) than the baseline GNNAEs.


• The LGAEs have a promising interpretability in latent space and more data 
efficient.


• Possible future works: further latent space analysis and LorentzNet-based 
autoencoders.
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Backup



• Classified by two half integers: .( j+, j−)

Lorentz Group
Irreducible Representations for Small ( j+, j−)
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Scalar 
Dimension: 1

Left-handed Weyl 
spinor 

Dimension: 2

Self-dual 4-form 
Dimension: 3 Dimension: 4

Right-handed Weyl 
spinor 

Dimension: 2

4-vector 
Dimension: 4 Dimension: 6 Dimension: 8

Anti-self-dual 4-
form 

Dimension: 3
Dimension: 6

Traceless 
symmetric tensor 

Dimension: 9
Dimension: 12

Dimension: 4 Dimension: 8 Dimension: 12 Dimension: 16

j+ = 0 j+ =
1
2

j+ = 1 j+ =
3
2

j− = 0

j− =
1
2

j− = 1

j− =
3
2



Model
Graph Neural Networks

• , possibly with global features


• Node features : particle 4-momentum


• Edge features 


• distance between particles


• interactions between particles


• Graph (global) features : jet mass

G = {V, E}

vi

eij

u
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p = [E, px, py, pz] ≡ [pT, η, ϕ, m]



R3,1 R3,1

R3,1 R3,1

f

⇤ ⇤

f

  Λ ⋅ f(p) = f(Λ ⋅ p)

Embedding Lorentz Group Symmetry

• Method: equivariance with respect to the Lorentz group.


• Common approaches of achieving equivariance


• Group convolutional kernels: generalization of CNN.


• Fourier space: decomposition into irreducible 
representations (irreps).


• Advantages of achieving equivariance


• Data efficiency


• Interpretability

28
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Model
Choices of Aggregation in LGAE
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• Linear mixing (LGAE-Mix): concatenate nodes and linearly mix.


• Note: We are imposing a specific order, so it breaks the permutation 
symmetry.


• Max/Min/Mean pooling.


• Min/Max with respect to the Lorentz scalars.


• Can concatenate these, such as min⊕max and min⊕max⊕mean.



Experiment
Settings

• Loss functions


• LGAE-Mix, GNNAE-PL, and CNNAE: MSE


• LGAE-Min-Max and GNNAE-PL: Chamfer loss 
.


• Alternatives


• Energy mover distance (EMD) [arXiv:1902.02346]: difficult computationally.


• Hungarian loss (our implementation here): difficult to converge.

ℒchamfer(J1, J2) = ∑
p1∈J1

min
p2∈J2

|p1 − p2 |2 + ∑
p2∈J2

min
p1∈J1

|p1 − p2 |2
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https://arxiv.org/abs/1902.02346
https://github.com/zichunhao/lgn-autoencoder/blob/main/utils/losses/hungarian_mse/hungarian_mse.py


LGAE Parameters

31

• Parameters to optimize:  of each layer and the latent space.


• Encoder: .


• Aggregation: {min-max, mix}.


• Latent space dimension


• 


• 


• Decoder: .

τ(m,n)

{τ(t)
(m,n)}

4
t=1 = (3,3,4,4)

τ(0,0) = 1

τ(1/2,1/2) ∈ {1,…,14}

{τ(t)
(m,n)}

4
t=1 = (3,3,4,4)

Experiment



Experiment
Reconstruction of Particle Features Compression level: 

≈ 60 %

32



Experiment
Reconstruction of Jet Features Compression level: 

≈ 60 %
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Experiment
Anomaly Detection: Top Tagging
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LGAEs have better  at low εs εb



Experiment
Anomaly Detection: W Tagging
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LGAEs have better  at low εs εb



Experiment
Anomaly Detection: Z Tagging
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LGAEs have better  at low εs εb



Experiment
Anomaly Detection: ParticleNet
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Not as good as the SOTA 
supervised model, as expected



Experiment
Latent Space Analysis: Correlations

Model: LGAE-Mix with 2 latent 4-vectors

No other strong correlations found Possibly new useful quantities?
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Jet 3-momentum encoded in 
the total latent 4-vector


