
Classifying importance regions in Monte Carlo
simulations with machine learning

Raymundo Ramos
Korea Institute for Advanced Study

(based on work with: M. Park (SEOULTECH) and K. Ban (KIAS))

ML4Jets2024
Paris, France, November 5, 2024

1 / 20

From theory to discovery (or limits)

Experiment

Analysis Simulation

Theory

Compare

Discoveries Limits

no match

match

More diverse and more precise
experimental results.

BSM physics may be hiding in ever
shrinking error bars.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

2 / 20

From theory to discovery (or limits)

Experiment

Analysis Simulation

Theory

Compare

Discoveries Limits

no match

match

More diverse and more precise
experimental results.

BSM physics may be hiding in ever
shrinking error bars.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

We need improved techniques for
data analysis

2 / 20

Complications along the way

▶ Several dimensions

▶ Multimodality

▶ Curved degeneracy

▶ …

3 / 20

Monte Carlo: brief review

𝑓(𝑥): Output of a comprehensive calculation with 𝑑-dimensional input 𝑥
▶ May become time consuming

▶ Likely to require lots of computational resources

To extract answers: Interpret 𝑓(𝑥) in relation to a probability density and
use Monte Carlo simulations.

•Monte Carlo (MC) integration in space Φ

𝐼[𝑓] = ∫
Φ

𝑑𝑥 𝑓(𝑥) = 𝑉Φ⟨𝑓⟩Φ, with 𝑉Φ = ∫
Φ

𝑑𝑥 ,

MC estimate (𝑁 events): 𝐸(𝐼) = 𝑉Φ𝐸(⟨𝑓⟩Φ), 𝐸(⟨𝑓⟩Φ) = 1
𝑁

𝑁
∑
𝑛

𝑓(𝑥𝑛)

Variance: 𝜎2(𝐸(𝐼)) = 𝑉 2
Φ𝜎2

Φ(𝑓(𝑥))/𝑁

4 / 20

Monte Carlo: brief review

•Variance reduction: stratified sampling

Reduce variance by partitioning the space:

Φ = ∑
𝑗

Φ𝑗, 𝑉Φ = ∑
𝑗

𝑉Φ𝑗

Usually, volumes of partitions are known and

𝐸(𝐼) = ∑
𝑗

𝑉Φ𝑗
𝐸(⟨𝑓⟩Φ𝑗

), 𝜎2(𝐸(𝐼)) = ∑
𝑗

𝑉 2
Φ𝑗

𝜎2
Φ𝑗

(𝑓(𝑥))/𝑁𝑗

Oversampling needed only in partitions with large variance

5 / 20

Remixing stratified sampling, Lebesgue style

x1
15 10 5 0 5 10 15

x
2

15
10
5

0
51015

function value

0
5

10
15
20
25
30
35

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
x

100

200

300

400

f(x
)

Φ𝑗 = {𝑥 ∣ 𝑙𝑗 < 𝑓(𝑥) ≤ 𝑙𝑗+1} → 𝐸(𝐼) = ∑
𝑗

𝐸(𝑉Φ𝑗
)𝐸(⟨𝑓⟩Φ𝑗

)

𝑉Φ𝑗
and ⟨𝑓⟩Φ𝑗

are independent:

𝜎2(𝐸(𝐼)) = 𝐸2(𝑉Φ𝑗
)𝜎2

Φ(⟨𝑓⟩Φ𝑗
)+𝐸2(⟨𝑓⟩Φ𝑗

)𝜎2
Φ(𝑉Φ𝑗

)+𝜎2
Φ(⟨𝑓⟩Φ𝑗

)𝜎2
Φ(𝑉Φ𝑗

)
6 / 20

Remixing stratified sampling with a neural network

▶ Neural networks (NN) as generic function approximators

▶ Useful when training a NN could be more efficient than passing
every single point through a heavy calculation

Main idea: train the NN to classify points according to contours

NN{x⃗}

{x⃗}1

{x⃗}2
...

{x⃗}n

Large set of n-dimensional
coordinates

The neural network encodes
the division of regions

It is not necessary to run
the function to know where
each x⃗ belongs

Evaluations of the neural network → determine 𝐸(𝑉Φ𝑗
), reduce 𝜎2

Φ(𝑉Φ𝑗
)

7 / 20

Remixing stratified sampling with a neural network

•𝐸2(𝑉Φ𝑗
)𝜎2

Φ(⟨𝑓⟩Φ𝑗
)

𝜎2
Φ(⟨𝑓⟩Φ𝑗

): reduced by partitioning, limited by contours of 𝑓(𝑥).
Only part where the number of evaluations of 𝑓(𝑥) is important
Inaccurate network increases variance.

•𝐸2(⟨𝑓⟩Φ𝑗
)𝜎2

Φ(𝑉Φ𝑗
)

𝜎2
Φ(𝑉Φ𝑗

) reduced by evaluations of neural network.
Many techniques can be used to reduce this.
Evaluating the network is fast.

•𝜎2
Φ(⟨𝑓⟩Φ𝑗

)𝜎2
Φ(𝑉Φ𝑗

)
This shrinks faster than the other two

8 / 20

Remixing stratified sampling with a neural network
Next question: How to divide the range of 𝑓(𝑥)?

▶ Infinite possibilities
▶ a few simple examples, choose limits on 𝑓(⃗𝑥) such that:

Ü Φ𝑗 with similar lengths 𝑉Φ𝑗

t Φ𝑗 with similar 𝐸2(𝑉Φ𝑗
)𝜎2(𝑓(𝑥 ∈ Φ𝑗))

1 2 3 4

x

0

100

200

300

400

f
(x

)

Criterion: same contribution to variance

9 / 20

Learn divisions of a function with multiple peaks

20 regions: Regions can have up to three subregions.

x1
15 10 5 0 5 10 15

x
2

15
10
5

0
51015

function value

0
5

10
15
20
25
30
35

15 10 5 0 5 10 15
x1

15

10

5

0

5

10

15

x 2

0

5

10

15

20

25

30

35

10 / 20

Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral

15 10 5 0 5 10 15
x1

15

10

5

0

5

10

15

x 2

After first training
Uncertain
Misclassified

15 10 5 0 5 10 15
x1

15

10

5

0

5

10

15

x 2

After sixth training
Uncertain
Misclassified

Step: (0.1) train → (0.2) predict → (0.3) add uncertain and errors →
(1.1) train … [See Hammad, Park, RR, Saha, arXiv:2207.09959]

11 / 20

Toy example: 7D function with large cancellation

4 2 0 2 4x1
4

2
0

2
4

x 2

100

0

100
f

2D slice of 7D space

𝑥 ∈ [−5, 5]7

𝑓(𝑥) = 100[𝑓+(𝑥)−𝑓−(𝑥)]+0.1𝑓bg(𝑥)

∫ 𝑓(𝑥)𝑑𝑥 = ∫ 0.1𝑓bg(𝑥) ≈ 0.1

Multilayer perceptron: 2 hidden layers, 7D input

▶ Hidden: nodes 2 × 𝑛reg × 7 , 𝑛reg × 7 , activation ReLU

▶ Output: 𝑛reg − 1, activation: tanh

12 / 20

Toy example: 7D function with large cancellation

Compare with vegas: Using python vegas module [G. P. Lepage,
arxiv:2009.05112]

Simple approach:

•Target an estimated value of total evaluations of same order.

•Vegas: Distribute total evaluations among different iterations.

•Use 20 runs to calculate average and error.

•Our total number of evaluations include points used for training.

•NOTE: expect Vegas+ to be much faster for fast 𝑓(𝑥).

13 / 20

1

3

5 evals. for vegas min. dev.

total number of evaluations [107]

−0.2

0.0

0.2

0.4

0.6

th
is

w
or

k
in

te
gr

al
es

tim
at

es

20 runs average
±1σ

15 20 25

number of regions

0.0

0.1

0.2

1
σ

vegas min. dev.

20 runs deviation

1

3

5

total number of evaluations [107]

−0.2

0.0

0.2

0.4

0.6

ve
ga

s
in

te
gr

al
es

tim
at

es

20 runs average
±1σ

20 40 60 80 100

nitn

0.0

0.1

0.2

1
σ

0.058

20 runs deviation

14 / 20

ray
Our result

ray
vegas

ray
total number of points evaluated with function [10^7]

ray
Integral estimates

ray
error

Toy example: 7D function with large cancellation

2D distribution of points for different amount of regions

−4 −2 0 2 4
x1

−4

−2

0

2

4

x
2

18 regions, ∼ 6.21× 106 points

10

102

103

104

−4 −2 0 2 4
x1

−4

−2

0

2

4

x
2

26 regions, ∼ 4.02× 107 points
inaccurate net

103

104

−4 −2 0 2 4
x1

−4

−2

0

2

4

x
2

29 regions, ∼ 1.03× 106 points

1

10

102

103

b
18 regions
6.21×106 points
accurate net

26 regions
4.02×107 points
inaccurate net

29 regions
1.03×106 points
accurate net

15 / 20

Event generation: Quark pair to electron + positron

Very simple example:

𝑢�̄� → 𝑒−𝑒+

▶ ROOT - TGenPhaseSpace: phase space generator.

▶ Madgraph (standalone mode): matrix element.

▶ NNPDF23: parton density function.

▶ cuts: leptons: 𝑝𝑇 > 10 GeV, |𝜂| < 2.5

16 / 20

Generate events: 10 usable regions

𝑒−𝑒+ invariant mass projection

▶ Sample each region until
enough events are
accumulated.
NN can tell which
regions points belong to.

▶ Select points using correct
result.

10 9 8
7

6
6
5 4

3 21

𝑚𝑒𝑒 [GeV]

17 / 20

▶ 105 unweighted events
▶ High 𝑚𝑒𝑒 error expected

from thinning of sample.
▶ Invariant mass around 𝑍

resonance is similar when
comparing to MadGraph

▶ Efficiency of selection of
unweighted events
increases with more
regions. But more regions
requires more points for
training

18 / 20

Summary

▶ Monte Carlo simulations could be challenging due to
$$ Time consuming costly operations

c Complicated characteristics of the problem

▶ Machine learning can improve the situation, but many options exist.

Ô We presented a process to accelerate sampling of points for slow
functions in a parameter space using a neural network.

Ô The main idea is to separate regions according to importance.
▶ Concentrate on high importance regions
▶ Reduce work in regions that contribute less to results

Ô Division process based and applied only on value of 𝑓(𝑥).

Ô Considerable bike-shedding left out of this talk

19 / 20

Thanks for listening!

20 / 20

