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From theory to discovery (or limits)

[Experiment] [ Theory ]

More diverse and more precise
experimental results.

BSM physics may be hiding in ever

no match| shrinking error bars.

Simulations have to keep up with
the complexity of experiments and
provide accurate predictions.

[Discoveries] [LimitsJ
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Complications along the way

P Several dimensions
» Multimodality
P Curved degeneracy

> .
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Monte Carlo: brief review

f(x): Output of a comprehensive calculation with d-dimensional input x

P May become time consuming
P> Likely to require lots of computational resources

To extract answers: Interpret f(x) in relation to a probability density and
use Monte Carlo simulations.

= Monte Carlo (MC) integration in space ¢

1] = / 0z f(2) = Vi (f)gr with Vy = / iz,
b P

MC estimate (N events): E(I) = Vo E((f)g), E((f)g) = ]{/%f@n)
Variance: 0?(E(I)) = VZo3(f(x))/N
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Monte Carlo: brief review

= Variance reduction: stratified sampling

Reduce variance by partitioning the space:
=2 0 Vo=V,
J J
Usually, volumes of partitions are known and

E(I) =Y Va B((f)a), o*(B() =3 VZ o4 (F)/N,

Oversampling needed only in partitions with large variance
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Remixing stratified sampling, Lebesgue style
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Remixing stratified sampling with a neural network

P Neural networks (NN) as generic function approximators

P> Useful when training a NN could be more efficient than passing
every single point through a heavy calculation

Main idea: train the NN to classify points according to contours

{Z}1  The neural network encodes
the division of regions

Large set of n-dimensional {7}
coordinates @ . It is not necessary to run
: the function to know where
{#}, each Z belongs

Evaluations of the neural network — determine E(Vy ), reduce o2 (Vg )
J J
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Remixing stratified sampling with a neural network

« B*(Vy )03 ((F)a))
U%((f)ti,;): reduced by partitioning, limited by contours of f(x).
Only part where the number of evaluations of f(z) is important
Inaccurate network increases variance.

«B2({f)g )0 (Vi)
o2 (Véj) reduced by evaluations of neural network.
Many techniques can be used to reduce this.

Evaluating the network is fast.

This shrinks faster than the other two
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Remixing stratified sampling with a neural network
Next question: How to divide the range of f(x)?

P Infinite possibilities
P a few simple examples, choose limits on f(Z) such that:

= @, with similar lengths Vq>j

v @, with similar E2(Vy, )o?(f(z € ®)))

77 S . o

300 1

D
= 200 1

Criterion: same contribution to variance

100
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Learn divisions of a function with multiple peaks

20 regions: Regions can have up to three subregions.

anjeA uolpuny
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Learn divisions of a function with multiple peaks

20 regions with similar contribution to value of integral

s After first training 1s After sixth training
e Uncertain e Uncertain
104 X Misclassified 10 4 X Misclassified
54 54
< 0 < 0
_5 B _5 -
—10 1 —-10 1
-15 T T T T T -15 T T T T T
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
X1 X1

Step: (0.1) train — (0.2) predict — (0.3) add uncertain and errors —
(1.1) train .. [See Hammad, Park, RR, Saha, arXiv:2207.09959]
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Toy example: 7D function with large cancellation

2D slice of 7D space

r € [-5,5]"
" f(a) = 100[f, (&)~ f_(2)]+0.1 ()

/f(m)dmz/o.lfbg(x) ~ 0.1

Multilayer perceptron: 2 hidden layers, 7D input
P Hidden: nodes 2 xmn., x7 , mn x7 , activation RelLU

reg

» Output: n,, — 1, activation: tanh
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Toy example: 7D function with large cancellation

Compare with vegas: Using python vegas module [G. P. Lepage,
arxiv:2009.05112]

Simple approach:
= Target an estimated value of total evaluations of same order.
= Vegas: Distribute total evaluations among different iterations.

= Use 20 runs to calculate average and error.
= Our total number of evaluations include points used for training.

= NOTE: expect Vegas+ to be much faster for fast f(z).

13/20



total number of points evaluated with function [1077]

total number of evaluations [107]
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ray
Our result
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total number of points evaluated with function [10^7]
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Integral estimates
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Toy example: 7D function with large cancellation

2D distribution of points for different amount of regions

26 regions, ~ 4.02 x 107 points

18 regions, ~ 6.21 x 10% points inaccurate net 29 regions, ~ 1.03 x 10° points
\ v i e Lo
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18 regions 26 regions 29 regions
6.21x10° points 4.02x107 points 1.03x10° points

inaccurate net
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Event generation: Quark pair to electron + positron

Very simple example:

uu — e et
P> ROOT - TGenPhaseSpace: phase space generator.
P> Madgraph (standalone mode): matrix element.

P> NNPDF23: parton density function.

P cuts: leptons: pp > 10GeV, |n] < 2.5
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Generate events: 10 usable regions

e~ e’ invariant mass projection

P Sample each region until
enough events are
accumulated.

NN can tell which
regions points belong to.

P> Select points using correct
result.

m,, [GeV]
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Number of events

error

ui-ete~ 10° events

10°
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1 This work
MadGraph
1 Theory
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10° unweighted events
High m,, error expected
from thinning of sample.
Invariant mass around Z
resonance is similar when
comparing to MadGraph
Efficiency of selection of
unweighted events
increases with more
regions. But more regions
requires more points for
training
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Summary

P Monte Carlo simulations could be challenging due to
$$ Time consuming costly operations
%k Complicated characteristics of the problem
P Machine learning can improve the situation, but many options exist.

-> We presented a process to accelerate sampling of points for slow
functions in a parameter space using a neural network.

- The main idea is to separate regions according to importance.
P Concentrate on high importance regions
P Reduce work in regions that contribute less to results

-> Division process based and applied only on value of f(x).

- Considerable bike-shedding left out of this talk
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Thanks for listening!
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