The versatility of flow-based fast calorimeter surrogate models

lan Pang Nov 7, 2024 ML4Jets, Paris

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih, Y. Zhu [2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

ian.pang@physics.rutgers.edu

RUTGERS

Calorimeter shower simulation is major bottleneck in LHC computational pipeline!

Calorimeter shower simulation is major bottleneck in LHC computational pipeline!

calorimeter showers

Fast calorimeter generative model

Surrogate modeling to speed up generation of expensive GEANT4

Many different approaches tested on this task!

- GANs (e.g. 1712.10321, 2309.06515)
- VAEs (e.g. 2211.15380, 2312.09290)
- Normalizing flows (e.g. 2106.05285, 2302.11594)
- Diffusion (e.g. 2308.03847, 2308.03876) •
- Flow matching (2405.09629)

(See CaloChallenge summary paper [2410.21611] which compares the various approaches)

Fast Calorimeter Simulation Challenge 2022

View on GitHub

https://calochallenge.github.io/homepage/

Many different approaches tested on this task!

 10^{-3} • GANs 10^{-5} VAEs 10^{-7} 10^{2} 10^{1} Normalizing flows 10^{-2} Diffusion/Flow matching* 10^{-4} 10^{-6} Access to likelihood! 10^{-8} 10^{2}

★ Likelihood may be obtained from diffusion/flow matching models as well. However, it is often more difficult to do so.

$$O(10^4) - O(1)$$

difficult to do so.

Once we have a trained flow-based fast calorimeter model, we get ...

1. A regression/calibration model [2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

infers the particle incident energy

2. An anomaly detector [2312.11618] C. Krause, B. Nachman, IP, D. Shih

sensitive to new physics

All for free!

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

, we want to infer $E_{\rm inc}$

Perform maximum likelihood estimation (MLE) with p

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

, we want to infer $E_{
m inc}$

Perform maximum likelihood estimation (MLE) with p

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

Given

, we want to infer

Perform maximum likelihood estimation (MLE) with

- True $E_{\rm inc}$: Solid vertical line
- Boundary of 68% CI : Red vertical lines

Limitations of mean square error (MSE) calibration

Want to regress z_i given x_i Loss function: $L[f] = \sum_i (f_{MSE})$

$$z(x_i)-z_i)^2,$$

Limitations of mean square error (MSE) calibration

Want to regress z_i given x_i Loss function: $L[f] = \sum (f_{MSE})$ $f_{\text{MSE}}(x) = \langle Z | X = x \rangle$ $= \int dz \, z \, p_{Z|X}^{\mathsf{train}}(z \,|\, x)$ $= \int dz \, z \, p_{X|Z}^{\text{tra}}$

$$(x_i)-z_i)^2,$$

$$ain_{Z}(x \mid z) \frac{p_{Z}^{train}(z)}{p_{X}^{train}(x)}$$

Limitations of mean square error (MSE) calibration

$$(x_i)-z_i)^2,$$

$$ain_{Z}(x \mid z) \frac{p_{Z}^{train}(z)}{p_{X}^{train}(x)}$$

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

1. MLE (flow) calibration is independent of the prior $p(E_{inc})$

- MSE-based calibration depends on $p(E_{inc})$
- Our calibration is less biased!
 - **Bias**: Deviation of <u>average</u> prediction from true answer

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

1. MLE (flow) calibration is independent of the prior $p(E_{inc})$

- MSE-based calibration depends on $p(E_{inc})$
- Our calibration is less biased!
 - **Bias**: Deviation of <u>average</u> prediction from true answer
 - Mode (average) of $p(E_{\rm pred}/E_{\rm true})$ at fixed $E_{\rm true}$ closer to 1

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

- 2. Access to per-shower resolution $\sigma_{\rm shower}$
 - MSE-based calibration gives point estimates (no uncertainty quantification)
 - Reliable per-shower resolution

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih

- 2. Access to per-shower resolution $\sigma_{\rm shower}$
 - MSE-based calibration gives point estimates (no uncertainty quantification)
 - Reliable per-shower resolution

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Detect BSM anomalies by making cut on p

Invisible pseudoscalar particle χ

• $\chi \rightarrow \gamma \gamma$ (highly boosted)

 \bullet

lacksquare

Consider different masses and lifetimes

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Unsupervised anomaly detection

- Relatively model-agnostic (only assumed photon showers)
- Able to distinguish a variety of anomalous showers from SM showers

Significance improvement =	True positive rate		
	$\sqrt{False positive rate}$		

[]

Displacement

1.44	316.21	316.19	316.20	315.85			
1.4	219.58	220.30	225.78	234.12			
1.32	5.98	5.97	6.40	12.15			
1.24	4.92	4.92	5.00	8.96			
1.16	5.12	5.12	5.23	11.05			
1.08	5.50	5.51	5.64	13.45			
1. 04	1.86	1.86	1.89	2.59			
1.0	1.00	1.00	1.00	1.24			
0.00	1.00	1.00	1.00	14.32			
0.33	1.00	1.00	1.09	63.94			
	0.005	0.05	0.5	5.0			
	m_{χ} [GeV]						

- 10⁰

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Unsupervised anomaly detec

- Relatively model-agnostic (only as photon showers)
- Able to distinguish a variety of ano showers from SM showers

Significance improvement =	True positive rate		
	$\sqrt{False positive rate}$		

ction	1.44	316.21	316.19	316.20	315.85
	1.4	219.58	220.30	225.78	234.12
ssumed	ן] 1.32	5.98	5.97	6.40	12.15
	z [m 1.24	4.92	4.92	5.00	8.96
	acement <i>z</i> [m] 1.08 1.16 1.24	5.12	5.12	5.23	11.05
omalous	acen 1.08	5.50	5.51	5.64	13.45
	Display	1.86	1.86	1.89	2.59
	1.0	1.00	1.00	1.00	1.24
	0.66	1.00	1.00	1.00	14.32
	0.33	1.00	1.00	1.09	63.94
		0.005	0.05	0.5	5.0
$\prime \text{ of } \chi = 50 \text{ GeV}$			<i>m</i> _χ [GeV]	

- 10⁰

Significance improvement =

Conclusions

- 0 access to the likelihood
- Flow-based fast calorimeter surrogate models can be repurposed to do calibration and anomaly detection
- per-shower resolutions
- **Unsupervised** anomaly detection that is **model agnostic** 0

Normalizing flows are state-of-the-art fast calorimeter surrogate models with

Calibration model is less biased than typical direct regression and provides

ian.pang@physics.rutgers.edu

Thank you!

Backup

Normalizing Flows

Density estimation, p(x)

Normalizing Flows

 $p(x \mid c) = \pi(f(x \mid c))$

where

Example ansformation
$$f$$

$$f(x | c) = z$$
Data space
with more complex distribution
 $x \sim p(x)$
Data space
with more complex distribution
 $x \sim p(x)$

Density estimation, $p(x \mid c)$

Normalizing Flows

Calorimeter geometry (AD)

Layer	z length	η length	ϕ length	Number
index	(mm)	(mm)	(mm)	of voxels
0	90	5	160	3×96
1	347	40	40	12×12
2	43	80	40	12×6

Two energy blobs

Reconstructed E_{inc} (AD)

- No a priori access to $E_{\rm inc}$: Use reconstructed energy $E_{\rm inc}^{\rm (rec)} = \lambda E_{\rm dep}$ Can imagine performing more sophisticated calibration to get $E_{inc}^{(rec)}$

Calorimeter geometry (calibration)

	Layer	z length	η length	ϕ length	Number
	index	(mm)	(mm)	(mm)	of voxels
	0	90	5	160	3×96
ECAL	1	347	40	40	12×12
	2	43	80	40	12×6
	3	375	20.83	666.67	3×96
HCAL	4	667	166.67	166.67	12×12
	5	958	333.33	166.67	12×6

Mode estimation (calibration)

- 1. Draw with replacement N samples from N values of $E_{\rm pred}$, where N is the number of showers in the evaluation dataset for a given fixed $E_{\rm true}$.
- 2. Perform kernel density estimation of the drawn samples with kernel bandwith determined using Scott's rule
- 3. Identify the position of the mode of the estimated density
- 4. Repeat steps 1-3 for a total of 20 times
- 5. Compute the mean and standard deviation of the 20 estimated values of the mode

Prior dependence of MSE (calibration)

$$L[f] = \sum_{i} (f_{MSE}(x_i) - z_i)^2,$$

$$f_{\text{MSE}}(x) = \langle Z | X$$
$$= \int dz z$$
$$= \int dz z$$

 $=x\rangle$

 $z p_{Z|X}^{\mathsf{train}}(z \mid x)$

$$p_{X|Z}^{\mathsf{train}}(x \mid z) \frac{p_Z^{\mathsf{train}}(z)}{p_X^{\mathsf{train}}(x)}$$

Resolution (calibration)

[2312.11618] C. Krause, B. Nachman, IP, D. Shih

Trained on $m_{\chi} = 5$ GeV, lifetime = 1 ns :

Significance improvement =

 $\sqrt{False positive rate}$

 $\sqrt{False positive rate}$

