The versatility of flow-based fast calorimeter surrogate models

Ian Pang Nov 7, 2024 ML4Jets, Paris

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih [2312.11618] C. Krause, B. Nachman, **IP**, D. Shih, Y. Zhu

ian.pang@physics.rutgers.edu 1/12

RUTGERS

Calorimeter shower simulation is major bottleneck in LHC computational pipeline!

Calorimeter shower simulation is major bottleneck in LHC computational pipeline!

Fast calorimeter generative model **…**

Surrogate modeling to **speed up** generation of expensive GEANT4

calorimeter showers

Many different approaches tested on this task!

- GANs (e.g. 1712.10321, 2309.06515)
- VAEs (e.g. 2211.15380, 2312.09290)
- Normalizing flows (e.g. 2106.05285, 2302.11594)
- Diffusion (e.g. 2308.03847, 2308.03876)
- Flow matching (2405.09629)

(See CaloChallenge summary paper [2410.21611] which compares the various approaches)

Fast Calorimeter Simulation Challenge 2022

View on GitHub

https://calochallenge.github.io/homepage/ 3/12

Many different approaches tested on this task!

matching models as well. However, it is often more difficult to do so. *

$$
\mathcal{O}(10^4) - \mathcal{O}(1
$$

*

Once we have a trained flow-based fast calorimeter model, we get …

• sensitive to new physics

1. A **regression/calibration** model [2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

2. An **anomaly detector** [2312.11618] C. Krause, B. Nachman, **IP**, D. Shih

• infers the particle incident energy

All for free!

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

Given $\left(\mathbb{G}_{\mathbb{R}}\right)$, we want to infer E_{inc}

Given \mathbb{E}_{max} , we want to infer E_{inc}

Given \mathbb{Z}_m , we want to infer E_{inc}

Perform maximum likelihood estimation (MLE) with p $\left| \begin{array}{cc} E_{\text{inc}} \end{array} \right|$

- True E_{inc} : Solid vertical line
- Boundary of 68% CI : Red vertical lines

Limitations of mean square error (MSE) calibration

Loss function: $L[f] = \sum$ *i* (*f* MSE(*xi* Want to regress z_i given x_i

$$
E_i(x_i) - z_i)^2
$$

$$
x_i \cdot E_{inc}
$$

$$
Z_i \cdot E_{inc}
$$

Limitations of mean square error (MSE) calibration

Loss function: $L[f] = \sum$ *i* (*f* MSE(*xi* $f_{\text{MSE}}(x) = \langle Z | X = x \rangle$ $=\int dz z p_{Z|X}^{\dagger}$ train $=\int dz z p_{X|Z}^{\dagger}$ train Want to regress z_i given x_i

$$
(\mathbf{x}_i) - z_i)^2
$$

Prior dependent!

 $\frac{Z}{X}$ $\frac{Z}{X}$ $\frac{Z}{X}$ $\frac{Z}{X}$

 $\frac{X}{Z}$ $\frac{X}{Z}$ $\frac{X}{Z}$ $\frac{Z}{Z}$ $p_Z^{\{ \mathsf{train}_{(z)} \}}$ *p*train $\frac{1}{X}$ diri (x)

$$
x_i \cdot E_{inc}
$$

Limitations of mean square error (MSE) calibration

$$
(\mathbf{x}_i) - z_i)^2
$$

Prior dependent!

 $\frac{Z}{X}$ $\frac{Z}{X}$ $\frac{Z}{X}$ $\frac{Z}{X}$

 $\frac{X}{Z}$ $\frac{X}{Z}$ $\frac{X}{Z}$ $\frac{Z}{Z}$ $p_Z^{\{ \mathsf{train}_{(z)} \}}$ *p*train $\frac{1}{X}$ diri (x)

$$
x_i \cdot E_{inc}
$$

- MSE-based calibration depends on $p(E_{\text{inc}})$
- Our calibration is less biased!
	- **Bias**: Deviation of average prediction from true answer

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

1. MLE (flow) calibration is independent of the prior $p(E_{\text{inc}})$

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

1. MLE (flow) calibration is independent of the prior $p(E_{\text{inc}})$

- MSE-based calibration depends on $p(E_{\text{inc}})$
- Our calibration is less biased!
	- **Bias**: Deviation of average prediction from true answer
	- Mode (average) of $p(E_{pred}/E_{true})$ at fixed $E_{\rm true}$ closer to 1

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

- 2. Access to per-shower resolution σ_shower
	- MSE-based calibration gives point estimates (no uncertainty quantification)
	- Reliable per-shower resolution

[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, **IP**, D. Shih

- 2. Access to per-shower resolution σ_shower
	- MSE-based calibration gives point estimates (no uncertainty quantification)
	- Reliable per-shower resolution

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih

• Invisible pseudoscalar particle *χ*

• $\chi \rightarrow \gamma \gamma$ (highly boosted)

• Consider different masses and lifetimes

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih

10/12

Unsupervised anomaly detection

- Relatively model-agnostic (only assumed photon showers)
- Able to distinguish a variety of anomalous showers from SM showers

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih

 $[**m**]₁$

Displacement

Energy of $\chi = 50$ GeV

 -10^{0}

10/12

- Relatively model-agnostic (only as photon showers)
- Able to distinguish a variety of ano showers from SM showers

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih

Unsupervised anomaly detect

 -10°

Significance improvement =

11/12

11/12

11/12

Conclusions

- \overline{O} **access to the likelihood**
- Flow-based fast calorimeter surrogate models can be **repurposed** to do calibration and anomaly detection
- **per-shower resolutions**
- **Unsupervised** anomaly detection that is **model agnostic** \overline{O}

Normalizing flows are state-of-the-art fast calorimeter surrogate models with

Calibration model is **less biased** than typical direct regression and provides

ian.pang@physics.rutgers.edu

Thank you!

Backup

Normalizing Flows

Density estimation, *p*(*x*)

Normalizing Flows

 $p(x|c) = \pi(f(x))$

 w here

Data space	Data space																																							
anstormation f	with more complex distribution																																							
(c)	(c)	(c)	(d)																																					
(c)	(c)	(d)	(d)	(d)																																				
(c)	(c)	(d)	(d)	(e)	$(f(x c))$																																			

Density estimation, $p(x | c)$

Normalizing Flows

Calorimeter geometry (AD)

Two energy blobs

Reconstructed E_{inc} (AD)

- No a priori access to $E_{\rm inc}$: Use reconstructed energy $E_{\rm inc}^{\rm (rec)}$
- Can imagine performing more sophisticated calibration to get

inc $= \lambda E_{\text{dep}}$ $E_{\text{inc}}^{\text{(rec)}}$ inc

Calorimeter geometry (calibration)

Mode estimation (calibration)

- 1. Draw with replacement N samples from N values of E_{pred} , where N is the number of showers in the evaluation dataset for a given fixed $E_{\rm true}$.
- 2. Perform kernel density estimation of the drawn samples with kernel bandwith determined using Scott's rule
- 3. Identify the position of the mode of the estimated density
- 4. Repeat steps 1-3 for a total of 20 times
- 5. Compute the mean and standard deviation of the 20 estimated values of the mode

Prior dependence of MSE (calibration)

$$
L[f] = \sum_{i} (f_{\text{MSE}}(x_i) - z_i)^2,
$$

$$
f_{MSE}(x) = \langle Z | X = x \rangle
$$

=
$$
\int dz z p_{Z|X}^{\text{train}}(z | x)
$$

=
$$
\int dz z p_{X|Z}^{\text{train}}(x | z) \frac{p_Z^{\text{train}}(z)}{p_X^{\text{train}}(x)}
$$

Resolution (calibration)

[2312.11618] C. Krause, B. Nachman, **IP**, D. Shih

Trained on $m_\chi = 5$ GeV, lifetime = 1 ns :

Significance improvement =

 $\sqrt{\text{False}}$ positive rate

 $\sqrt{\text{False}}$ positive rate

