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Fast Calorimeter Surrogate Modeling

Calorimeter shower simulation is major bottleneck in LHC 
computational pipeline!
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MC to compare 
measurement to theory 



Fast Calorimeter Surrogate Modeling

Calorimeter shower simulation is major bottleneck in LHC 
computational pipeline!
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Fast calorimeter 
generative model …

Surrogate modeling to speed up generation of expensive GEANT4 
calorimeter showers



Fast Calorimeter Surrogate Modeling

Many different approaches tested on this task! 


• GANs (e.g. 1712.10321, 2309.06515)


• VAEs (e.g. 2211.15380, 2312.09290)


• Normalizing flows (e.g. 2106.05285, 2302.11594)


• Diffusion (e.g. 2308.03847, 2308.03876)


• Flow matching (2405.09629)


(See CaloChallenge summary paper [2410.21611] which compares the various approaches)

/123https://calochallenge.github.io/homepage/



[2210.14245] C. Krause, IP, D. Shih 

Fast Calorimeter Surrogate Modeling

Many different approaches tested on this task! 


• GANs


• VAEs 


• Normalizing flows  

• Diffusion/Flow matching* 
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Access to likelihood!

 times faster than GEANT4𝒪(104) − 𝒪(105)Likelihood may be obtained from diffusion/flow 
matching models as well. However, it is often more 
difficult to do so.

* 



[2210.14245] C. Krause, IP, D. Shih 

Fast Calorimeter Surrogate Modeling

Many different approaches tested on this task! 


• GANs


• VAEs 


• Normalizing flows  

• Diffusion/Flow matching* 

3/12

Access to likelihood!

 times faster than GEANT4𝒪(104) − 𝒪(105)Likelihood may be obtained from diffusion/flow 
matching models as well. However, it is often more 
difficult to do so.

* 

p( |Einc)

Energy of incident particle 
Calorimeter shower 



Once we have a trained flow-based fast calorimeter model, we get …

1. A regression/calibration model 


• infers the particle incident energy 

2. An anomaly detector 


• sensitive to new physics


All for free!

[2312.11618] C. Krause, B. Nachman, IP, D. Shih 
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Regression of incident energy

Given , we want to infer Einc

p( |Einc)Perform maximum likelihood estimation (MLE) with 
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Regression of incident energy

Given , we want to infer Einc

p( |Einc)Perform maximum likelihood estimation (MLE) with 

•                       : Blue curve


• True  : Solid vertical line


• Boundary of 68% CI : Red vertical lines

Einc

p( |Einc)
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Limitations of mean square error (MSE) calibration

Loss function: L[ f ] = ∑
i

( fMSE(xi) − zi)2 ,
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Want to regress  given zi xi
xi :
zi : Einc
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= ∫ dz z ptrain
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ptrain
Z (z)

ptrain
X (x)

Prior dependent! 
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Want to regress  given zi xi

Only point estimate! 
(No uncertainty quantification) 

xi :
zi : Einc



Regression of incident energy

1. MLE (flow) calibration is independent of the prior  


• MSE-based calibration depends on 

• Our calibration is less biased!

p(Einc)
p(Einc)
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• Mode (average) of  at 
fixed  closer to 1

p(Epred/Etrue)
Etrue

• Bias: Deviation of average prediction 
from true answer



Regression of incident energy
[2404.18992] H. Du, C. Krause, V. Mikuni, B. Nachman, IP, D. Shih 

2. Access to per-shower resolution  


• MSE-based calibration gives point estimates (no uncertainty quantification)

• Reliable per-shower resolution

σshower

2σshower
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• MSE-based calibration gives point estimates (no uncertainty quantification)
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More accurate



Anomaly detection

p( |Einc)Flow trained to maximize for incident SM particle (e.g. photon)
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p( |Einc)Detect BSM anomalies by making cut on
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p( |Einc)Detect BSM anomalies by making cut on

[2312.11618] C. Krause, B. Nachman, IP, D. Shih 

No access to :  
Use reconstructed energy 

Einc
E(rec)

inc = λEdep



Anomaly detection

p( |Einc)Flow trained to maximize for incident SM particle (e.g. photon)
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p( |Einc)Detect BSM anomalies by making cut on

• Invisible pseudoscalar particle 


•  (highly boosted)


• Consider different masses and lifetimes

χ

χ → γγ

[2312.11618] C. Krause, B. Nachman, IP, D. Shih 



Anomaly detection
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Unsupervised anomaly detection 


• Relatively model-agnostic (only assumed 
photon showers)

• Able to distinguish a variety of anomalous 
showers from SM showers

[2312.11618] C. Krause, B. Nachman, IP, D. Shih 

Significance improvement = 
True positive rate
False positive rate

Energy of  = 50 GeVχ
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Unsupervised anomaly detection 


• Relatively model-agnostic (only assumed 
photon showers)

• Able to distinguish a variety of anomalous 
showers from SM showers

[2312.11618] C. Krause, B. Nachman, IP, D. Shih 

Significance improvement = 
True positive rate
False positive rate

Mostly > 1 

Energy of  = 50 GeVχ



Anomaly detection
[2312.11618] C. Krause, B. Nachman, IP, D. Shih 

Trained on  GeV, lifetime = 1 ns :mχ = 5 × 10−3

Significance improvement = 
True positive rate
False positive rate
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Anomaly detection
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Trained on  GeV, lifetime = 1 ns :mχ = 5 × 10−3

Significance improvement = 
True positive rate
False positive rate

Supervised outperforms 
unsupervised  
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Anomaly detection
[2312.11618] C. Krause, B. Nachman, IP, D. Shih 

Trained on  GeV, lifetime = 1 ns :mχ = 5 × 10−3

Significance improvement = 
True positive rate
False positive rate

Supervised performance 
not transferred 
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Conclusions
Normalizing flows are state-of-the-art fast calorimeter surrogate models with 
access to the likelihood

Flow-based fast calorimeter surrogate models can be repurposed to do 
calibration and anomaly detection

Calibration model is less biased than typical direct regression and provides 
per-shower resolutions

Unsupervised anomaly detection that is model agnostic

ian.pang@physics.rutgers.edu
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Thank you!
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Normalizing Flows

Latent space 

with simple base distribution


z ~ π(z)

p(x) = π( f(x)) det
∂f(x)
∂x

Bijective transformation  f
Data space 


with more complex distribution

x ~ p(x)

Density estimation, p(x)

Sample generation

where  f(x) = z
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Normalizing Flows

Latent space 

with simple base distribution


z ~ π(z)
Bijective transformation  f

Data space 

with more complex distribution


x ~ p(x)

Sample generation

Density can be repurposed 
as likelihood! p( |Einc)

Energy of incident particle 
where  f(x |c) = z

p(x |c) = π( f(x |c)) det
∂f(x |c)

∂x

Density estimation, p(x |c)



Calorimeter geometry (AD)



Two energy blobs



Reconstructed   (AD)Einc

• No a priori access to : Use reconstructed energy 

• Can imagine performing more sophisticated calibration to get 

Einc E(rec)
inc = λEdep

E(rec)
inc



Calorimeter geometry (calibration)



Mode estimation (calibration)

1. Draw with replacement N samples from N values of , where N is the number 
of showers in the evaluation dataset for a given fixed . 

2. Perform kernel density estimation of the drawn samples with kernel bandwith 
determined using Scott's rule  

3. Identify the position of the mode of the estimated density 

4. Repeat steps 1-3 for a total of 20 times 

5. Compute the mean and standard deviation of the 20 estimated values of the 
mode

Epred
Etrue



Prior dependence of MSE (calibration)

L[ f ] = ∑
i

( fMSE(xi) − zi)2 ,

fMSE(x) = ⟨Z |X = x⟩

= ∫ dz z ptrain
Z|X (z |x)

= ∫ dz z ptrain
X|Z (x |z)

ptrain
Z (z)

ptrain
X (x)



Resolution (calibration)

Mean predicted per-shower 
resolution agrees with full resolution

Able to predict asymmetric resolutions



Anomaly detection
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True positive rate
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Anomaly detection
[2312.11618] C. Krause, B. Nachman, IP, D. Shih 

Trained on  GeV, lifetime = 1 ns :mχ = 5

Significance improvement = 
True positive rate
False positive rate

Supervised performance 
transferable in some cases 


