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In this talk
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Hadronization at colliders

Image from Pythia 8.3 manual. The oA
radial coordinate is time or 1/energy ;
° o°
scale. S0
.‘._ 'S Hard Interaction
. . °. ® Resonance Decays
Hard process .do. perturbatively ®. & MECs, Matching & Merging
calculated, directly related to . //
underlying lagrangian, describes 2o YT otD
partons hidden to experiment. o @ | Ay, .0 [B Weak Showers |

Multiparton Interactions

Shower: perturbative evolution of
partons from hard to hadronization
scale, hidden to experiment.

Beam Remnants*

Strings

Ministrings / Clusters

Colour Reconnections
. . .. String Interactions

Hadronization: combining partons

into measurable hadrons, non

perturbative — Empirical models.

Bose-Einstein & Fermi-Dirac
Primary Hadrons
M Secondary Hadrons

e A Baryon
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Hadronization empirical models

(E,p)

. . . (E,-p)
Hadronization is a inherently — (@) —— (W ——

non-perturbative process — Empirical
models for predictions. Two main
parametric models: the Lund String model

(E, —p) .é,ph)
(Pythia) and the Cluster model (Herwig). ®\@

Tuned simulators are very successful. G —
However, we are pushing the models to N

their limits. Collective effects in general 3
are tricky to recover e.g. heavy baryon
production at high event multiplicities as
in arxiv:1807.11321.

~

Lund String Model: Colored singlets
+~20 parameters — Hadrons

Simplified example from
arxiv:2203.04983 .
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Machine Learning to the rescue?

Complex problem with no full model flexible enough and where training is
expensive? — Machine Learning should be really useful here!

A lot of possible ways to attack this problem. The richness of the involved
physics forbids the use of any plug-and-play algorithms.

Two groups have recently tackled the subject: MLHAD (arxiv:2203.04983,
arxiv:2311.09296, arxiv:2410.06342) and HADML (arxiv:2203.12660,
arxiv:2305.17169, arxiv:2312.08453). Different generators (Pythia, Herwig)
and different architectures (cCSWAE,BNF,GNNs, GAN) with different degrees
of implementation.
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Slight detour: Pythia Kinematic Reweighter

In arxiv:2308.13459, we introduced a way 03 p——=35030.5=080  __ a=076,5=098
to account for parametric variationson 2 [ %, | il
the fragmentation model in Pythia. 02f . - - i -
For pre-specified baseline hadronization L i I - . ]
parameters and a set of alternative 0.1F = 1r - ;
choices, we produce a set of events [ . 3, I S ]
with associated weights. These weights 0.0 ket et S
can be used to reweight the events from  $25f 7777 'ﬁ- I IS '+ ]
"baseline" to any of the desired reterm st e S o
"alternatives". R R
charge multiplicity charge multiplicity

10° events per parameter choice
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° arxiv:2411.02194 by N. Heller, P.
° liten, T.M ,S.M , B.
More efficient tunes: RSA e T Menzo < renn

Youssef

Rejection Sampling with
Autodifferentiation. Applied to the Lund
fragmentation function as learnable
Pytorch module but can be extended to
other problems with similar forward

1.1

models.

Useful for reweighting, parameter ] B
estimation, model exploration and ~
unbinned fitting. 091

Example: efficiently exploring the loss 05
landscape in parameter space.
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Take home message

Versatile and flexible approach to
parameter estimation. SBI via reweighting —
ML observables for tuning.

Example: Two parameter fit using different
observables, either high-level or ML based.
Here, contours estimated via bootstrapping
but autodiff gives us access to gradients for
uncertainty quantification.

Memory footprint and multiple base
parameterizations should be addressed
through dedicated efforts, especially when
scaling to more parameters, which RSA is built
todo.

L

arxiv:2411.02194 by N. Heller, P.
llten, T. Menzo, S. Mrenna, B.
Nachman, A. Siodmok, MS, A.
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Learning a data-driven reweighting

A more ambitious goal is a data-driven fragmentation function.

Reweighting can help! Assume the Lund string model is appropriate as a reference
model to reweight from. Weights should be such that simulations and data
indistinguishable at the measurable level. Data-driven weights, data-driven
fragmentation function.

Two step procedure: We learn how the measurable quantities should look like,
and then train a fragmentation function reweighter that morphs simulated events

accordingly.

A nice bonus: we can more easily incorporate subtleties of the Lund String
fragmentation model built into Pythia by a dedicated effort of 40+ years!
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Learning from data: HOMER

Histories and Observables for Monte-Carlo Event Reweighting: We take Pythia
as baseline and reweight that.

Two step procedure: We
generate once and
learn the appropriate
reweighting function.
New model is Pythia +
weight.

(No rejection sampling
needed here!)
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Learning from data:

HOMER

ML

Our simulation and data consist of full events. We use different Pythia
parameters to generate simulation and pseudo-data.

We restrict ourselves to the
qq string emitting only
pions. For simulation, we
record everything. For
pseudo-data, only
observable quantities.
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Matching sim to data

Our reweighted simulation
matches the data at the
observable level.

The agreement is better for step
1 than for step 2 / full weights
due to the combination of
additional bias + imperfect
training.
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High

Matching sim to data

For our first step using high-level ;

variables, we use BDTs — (([tnzal = (nza)))

Powerful, easy to tune and also n )

gives us feature importances (s M

through SHAP values. D :
(| Inzea| = (| Inzal))?)

MU'tIp'ICIty IS by far the most ((nzs| - (| Ina]))?)

important feature when (mayl =~ ([ Inz)))

matching simulation to data in el

our example. Ll

SHAP value (impact on model output)
Manuel Szewc Data-driven hadronization models 13



New underlying model

The weights are translated to a
data-driven fragmentation
function.

We see how the model almost
saturates what we can learn
using the chosen NN
architecture and is a great fit to
data.

This is also observed for
different m. bins.
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Take home message

We recover the underlying fragmentation
function given only observable quantities.

The Lund String model is still used as a
baseline, properly accounting for the event

structure is essential.

So far flavour has been ignored, with only
pions considered. Additionally, gluons make
things trickier, with slight modifications to —

(

be shown in forthcoming publication

(arxiv:241X:XXXX?).
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Conclusions

Hadronization is the type of problem you dream of if you want to work in ML
for HEP: physically meaningful and complicated enough that it is not simply
a case of plug-and-play with any ML algorithm.

Data representation, simulation-based inference and latent generative models
all come into play here.

Any developments impact existing tuning efforts and uncertainty
estimations.

This is very much an open problem, so feedback is necessary!
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Momentum space for finding next hadronization
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Limitations of the Lund String model

0O(20%) to O(50%) discrepancies between proton-proton and ion-ion collisions

Heavy particle composition as a function of event multiplicity is mismodelled at
high event multiplicities

Mismodelling of the mass dependence of the average transverse momentum

Minimum bias description can be incompatible because of low transverse
momentum mismodelling

Ridge in pp collisions missing in Pythia (and in general long range correlations are
hard to model)

Charged particle multiplicity spectrum is very sensitive to color reconnections and
MPI modelling
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Learning the Lund Fragmentation model

First task: learn the Lund String hadronization pdfs for e T~ — qq
Checks feasibility of the problem.

Introduce inductive bias. Improve over the existing empirical model by first
mapping it to a learnable model.

The first hadronization pdf can be iteratively applied to get a full chain.

PrLund () = pur ()
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Pythia Kinematic Reweighter

For reasonable choices where the EN N
. =21 —— Fit0.26+0.04xx ]

coverage between baseline and 2 [ | Means :
. . . o4 ]
alternative is good, this represents a 5 | ]
very powerful method for reducing g3F .
simulation costs and perhaps a better [ ]
. = :

way to compute uncertainties on a : ]
given Monte Carlo prediction. ' E
0 (I) — I2IOI l I4I0I I I6I0I l I8I0I I 'I(I)O

Number of variations
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Pythia Kinematic Reweighter

Coverage diagnostics can be the

. variation 1—p Neg/N figure
mean of event weights and the = e : :
. ry = 0.657 (0.1+7.9) x 104 6.2 x 10
effective degrees of freedom. = 0.459 (12+24) x 107 19 10-! } g aadls
ry = 1.792 (114£04) x 1071 7.3 x 1074
. a"* = 0.68 0 1
As we move away from the baseline, a =030 ~(05£40)x 108 58x 1072 }ﬁg_l
a=0.55 —(24+47)x107* 82x10
ol _ —4 -1
performance worsens. - B s L e
b=0.58 (4.0+2.0) x 1072 2.3 x 1073
b= 0.80 (L4+14)x10-3 34x10-! ( fi& 2
b=1.07 —(34+37) x107* 88x107!
apase = 0.350 0 1
opr = 0.283 (1.240.8) x 1072 1.4 x 1072 } fig. 4
opp = 0.360 —(49£31)x107* 9.1x107!
ab®se = (.68, bPase = (.58 0 1
a=0.30,b=0.80 (46+13)x1072 57x1073 } fig. 5
a=0.76, b= 0.98 (12 0:7)i%10~2 21 % 1072
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However...

These efforts aimed to learn a first hadronization function and then fine tune

it using data. Our baseline generates (p_,p,) directly based on our simplified
Lund string model.

However, this ignores a lot of subtleties of the Lund String fragmentation
model and how data is produced from this. These subtleties are built into
Pythia by a dedicated effort of 40+ years!

We need to take advantage of that.
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Graph Neural Networks (GNNs)

A more general representation of data. The Neural networks are applied over
graphs defined by nodes, features and edges with a process called Message
passing. The Neural Network updates each node by looking at its relation to
its neighbors and learns an embedding of the graph to be used downstream.

© @

&S e
(X9

input layer output layer

Image from https://arxiv.org/abs/1609.02907 %
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New underlying model

We are using pseudo-data
generated with a different set of
Pythia parameters — We know
the optimal observable to
distinguish between simulation
and data.

This observable shows that our
model may be very good but still
not perfect — Degeneracies in
high-level observables +
imperfect NN modelling.

0.0-

[ Data
[ Simulation
[1 Classifier
[1 Inference
HOMER
[1 Best NN
[ Exact w.
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1.5
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