
Pretrained Event Classification Model 
for Collider Experiments
Shuo Han, Joshua Ho, Ryan Roberts, Haichen Wang
University of California, Berkeley
Lawrence Berkeley National Laboratory

November 6, 2024
ML4Jets 2024



Introduction
● Machine Learning is one of the most powerful analysis tools we have access to

● However, ML models are expensive to train:
● GPU Hours

● Large sample of simulated data

● In collider physics, each experiment carries out hundreds of measurements, most of which require 
many iterations of training neural network models.

● Our goal: develop a single model that can be used for a wide range of tasks
● Increases the overall performance

● Decreases the training time

● Works even when limited in training statistics

● This development could contribute to a future foundational model for particle physics

2



Statement of Problem
● As a proof of principle, we start with a classification task
● Our goal is to improve binary classification by using a pretrained model for:

○ Higgs production processes
○ Top quark related processes

● I will be discussing techniques for training a pretrained model, as well as how to 
finetune it for analysis

● Comparing the performance between baseline model with models that utilize the 
pretrained model

● Techniques to introduce model interpretability → model similarity
● GPU resources cost comparison between model frameworks

3



Training Setup: Pretraining Model Data
Pretrained Model Training Data:
● Higgs production processes: ttH, tHjb, ggF, VBF, WH, ZH
● Top quark processes: ttyy, tttt, single top, ttbar, ttW, ttt
● Statistics: ~120M total (~10M per class)

4



Training Setup: Analysis Model Data
Example Analysis Tasks:
● ttH CP Even vs CP Odd (H → 𝛄𝛄)
● FCNC vs tHjb (H → inclusive)
● stop vs ttH (H → inclusive)
● WH vs ZH (H → inclusive)
● ttW vs ttt

Statistics: ~20M (10M per class)

“Fine-tuning”: The act of taking the pretrained model and specializing it for a specific 
analysis task.

5

Insert feynman diagrams

stop FCNC



Training Setup: Inputs

nodes = particle

edges = relationship 
between particlesGraph Neural Networks (GNNs) are a natural choice because 

of the point-cloud-like structure of our data

We will be using GNNs as a proof of concept for exploring 
techniques to be used in developing a Foundational Model

Input Features:
● Reconstructed objects: particle 4-vectors
● Particle Labels: type, b-tagging, lepton charge

Edge Features:
● Angular and Translational Separation

Global Features:
● Number of particles in each graph

6



Training Setup: Baseline Model Architecture
Baseline Model:
A standard GNN trained for binary classification 
for one of our example analysis tasks.

Implementation of the model used in the ATLAS 4 
tops observation [1] 

Pytorch and Deep Graph Library (DGL)

Inputs (graphs)

GN Block [2]

Output: Global 
Features

Classify
(Linear Layer)

Global Decoder
(MLP)

Output

Data Representation: 
Array of numbers

Data Representation: 
Graphs

Data Representation: 
GNN Score

7

[1] The ATLAS Collaboration: Eur. Phys. J. C 83, 496 (2023)
[2] arXiv:1806.01261

https://arxiv.org/pdf/2303.15061
https://arxiv.org/abs/1806.01261


Training Setup: Pretrained Model Architecture
Pretraining Model:
Same architecture as before, but trained on large and diverse dataset, with a different 
training goal.

8

Multi-Class Classification:
The goal of the pretraining is to separate the 
data by process

Predictions:
● P(ttH)
● P(ggF)
● P(WH)
● … etc

Multi-Label Classification:
The pretraining will predict various variables 
corresponding to the kinematics of the system 

Prediction:
● Exists: higgs_exists, top1_exists, …
● Pt: higgs_pt, top1_pt, …
● η: higgs_eta, top1_eta, …
● 𝟇: higgs_phi, top1_phi, …



Training Setup: Fine-tuning Model Architecture
Fine-tuned Model:
Specializing the pretrained model for various 
analysis tasks. 
● Starting point: uses the weights of the 

pretrained model, with a re-initialized 
MLP at the end

● Adjust the learning rate
○ Continue training the pretraining at a lower 

learning rate (~10% of the regular LR)
○ Train the newly initialized model at a regular 

learning rate
NOT transferred learning because the 
pretraining is still trainable – we saw a decrease 
in performance when compared to baseline 

Inputs (graphs)

GN Block

Output: Global 
Features

Classify
(Linear Layer)

Global Decoder
(MLP)

Output

Pretrained Model

Classify
(Linear Layer)

Global Decoder
(MLP)

Output

Newly Initialized Model

A general representation of 
our data

9



Results (Overall Performance)
Utilizing full statistics:

● 120M Pretraining
● 20M Analysis

Immediate Performance:
● Utilizing a pretrained model gives the model an 

initial boost in performance
● Seen in all analysis tasks

Ultimate Performance:
● The ultimate performance is increased when 

using the Multiclass pretraining
● Seen only in some of the analysis tasks

Use Cases:
● Training is expensive and we can only afford a 

few epochs
10



11



Results (Training Data Scaling)
Lacking Statistics:
● There is a significant increase in 

performance when the training data is 
lacking (up to 15% improvement in AUC)

Large Number of Training Data:
● Small increase in performance (0 to 2% 

increase in AUC)

Use Cases:
● Training on data (unsupervised clustering)
● Division of data into smaller phase space
● Signal region statistics lacking after 

stringent selection
● Simulation data too expensive

12



13



Similarity Tools
Why is the pretraining useful?
● Calculate the similarity between different models, use this information 

to gain insight on the information contained inside each model
Similarity Metric: Centered Kernel Alignment (CKA) [3]

14

Inputs (graphs)

GN Block [2]

Output: Global 
Features

Classify
(Linear Layer)

Global Decoder
(MLP)

Output

Before Decoder:
General Representation of 

Data

After Decoder:
Specialized Representation 

for Analysis 
[2] arXiv:1806.01261
[3] S. Kornblith, et. al. In International Conference on Machine Learning, p. 3519–3529, 2019.

https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/1905.00414


Similarity Results
Why is the pretraining useful?

The CKA results tell us that the Multiclass and 
Multilabel Models utilize a different representations 
of collision events with respect to the Baseline.

15



Similarity Results
Why is the pretraining useful?

The CKA results tell us that the Multiclass and 
Multilabel Models utilize a different representations 
of collision events with respect to the Baseline.

16



Resources For Training (Full Statistics)
GPU hours to get achieve performance of 99.9% of the baseline ultimate performance
● Multiclass Pretrianing: 45.5 GPU hours
● Multilabel Pretraining: 60.0 GPU hours 

Ratio with Baseline GPU hours

17

Training Task Baseline (GPU Hours) Multiclass / Baseline Multilabel / Baseline

ttH CP Even vs Odd 2.71 2.20 3.57

FCNC vs tHjb 2.35 0.30 4.17

ttW vs ttt 3.33 0.15 1.28

Stop vs ttH 1.78 0.27 1.01

WH vs ZH 1.98 0.15 2.52

Faster than baseline Slower than baseline



Resources For Training (Full Statistics)
GPU Hours Required (preliminary results for these different models)
● Multiclass Pretraining: 45.5 GPU hours
● Multilabel Pretraining: 60.0 GPU hours 
● Baseline: 2.43 GPU hours
● Fine tuning based on a Multiclass pretraining: 1.59 GPU hours

○ 65% faster than the baseline

If we account for the initial cost of the pretrainings, the Multiclass setup will use less GPU 
hours after a total of 60 separate trainings
● For every analysis, it is common to train the model many times for development, 

debugging, ensemble training, etc.

18



Conclusions
● Evidence shows utilizing pretrained models increase performance when limited in 

statistics or limited in epochs trained

● Utilizing the pretrained models achieves the same performance as the baseline faster time – 
these models converge faster

● We can use model similarity metrics to probe these complex models and gain insight on 
the information that they have learned

● We see that utilizing these pretrained models also leads to a decrease in GPU resources 
required

Thank you.

19



BACKUP

20



Results (Immediate Performance)
Lacking Statistics:
● There is a significant increase in 

performance when the training data is 
lacking (up to 13% improvement in AUC)

Large Number of Training Data:
● The performance of these fine-tuned models 

are in general, slightly better than the 
baseline 

● 0 ~ 2 % improvement 
Uses Cases:
● Training is expensive, and only a few 

epochs can be trained

21



22







25

Nodes: (num_nodes, 7)
7 features (defined in config): 
● pt
● eta
● phi
● Calc_E
● jet_btag
● charge
● NODE_TYPE

num_nodes = num_graphs * nodes_per_graph
● nodes_per_graph varies

Edges: (num_edges, 3)
3 features (defined in 
root_gnn_base/dataset/EdgeDataset: 
● deta
● dphi
● dR

num_edges = fully connected each node in 
each graph

Inputs

Globals: (num_graphs, 1)
1 feature (can change in config)
Default:
● number of nodes in graph



26

nodes
(num_nodes, 7)

node_encoder
MLP

edges
(num_edges, 3)

globals
(num_graphs, 1)

Step 1: Encoder Step

edge_encoder
MLP

gloabl_encoder
MLP

nodes
(num_nodes, 64)

edges
(num_edges, 64)

globals
(num_graphs, 64)



Message Passing Breakdown: Step 1 (Edge_Update)
nodes

(num_nodes, 64)
edges

(num_edges, 64)
globals

(num_graphs, 64)

For each edge, 
concatenate 

node_features_1 and 
node_features_2

(num_edges, 64*2)

nodes
(num_nodes, 64)

edges
(num_edges, 64)

globals
(num_graphs, 64)

edge_update
MLP

For each edge, use the 
global_features of that 

graph
(num_edges, 64)

edges
(num_edges, 64)

STEP 1



Message Passing Breakdown: Step 2 (Node_Update)

28

nodes
(num_nodes, 64)

edges
(num_edges, 64)

globals
(num_graphs, 64)

node_update
MLP

For each node, 
sum all 

edge_features from 
all it’s edges

(num_nodes, 64)

For each node, use 
global_features of 

that graph
(num_nodes, 64)STEP 2

nodes
(num_nodes, 64)



Message Passing Breakdown: Step 3 (Global_Update)

2929

nodes
(num_nodes, 64)

edges
(num_edges, 64)

globals
(num_graphs, 64)

global_update
MLP

For each graph, 
mean(all_edge_features)

(num_graphs, 64)

For each graph, 
mean(all_node_features)

(num_graphs, 64)

globals
(num_graphs, 64)

STEP 3

Repeat message passing n_proc_steps times



For each edge, 
concatenate 

node_features_1 and 
node_features_2

(num_edges, 64*2)

Step 2: Message Passing (loop for n_proc_steps)

30

nodes
(num_nodes, 64)

edges
(num_edges, 64)

globals
(num_graphs, 64)

edge_update
MLP

For each edge, use the 
global_features of that 

graph
(num_edges, 64)

edges
(num_edges, 64)

node_update
MLP

For each node, 
sum all 

edge_features from 
all it’s edges

(num_nodes, 64)

For each node, use 
global_features of 

that graph
(num_nodes, 64)

STEP 1

STEP 2

nodes
(num_nodes, 64)

global_update
MLP

For each graph, 
mean(all_edge_features)

(num_graphs, 64)

For each graph, 
mean(all_node_features)

(num_graphs, 64)
globals

(num_graphs, 64)

STEP 3



Step 3: Decoder

31

globals
(num_graphs, 64)

global_decoder
MLP

classify
Linear Layer

globals
(num_graphs, 64)

globals
(num_graphs, 1)


