

AUSTRIAN ACADEMY OF SCIENCES

CaloChallenge 2022 — Final Evaluation and Lessons Learned — ML4Jets 2024 Paris —

Claudius Krause

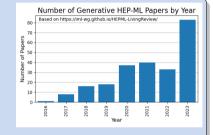
Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences (OeAW)

November 4, 2024

 \Rightarrow arXiv:2410.21611 \Leftarrow

It all started in 2021 ...

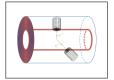
- ...the LHC-Olympics had just concluded.
- Generative AI was kicking off in HEP in 2020.
- Applications to Detector Simulation, as major bottleneck, were gaining popularity.



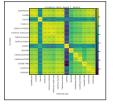
- However, $\mathcal{O}(10)$ architectures used $\mathcal{O}(8)$ datasets.
- \Rightarrow We created the CaloChallenge to benchmark and trigger new developments.

CaloChallenge 2022 — Final Evaluation and Lessons Learned

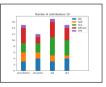
I: Datasets



II: Evaluation Metrics

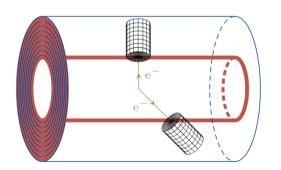


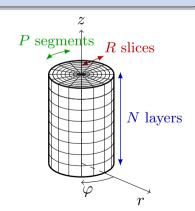
III: Results



CaloChallenge Showers are voxelized in cylindrical coordinates.

- There 4 datasets in increasing complexity / dimensionality.
- Particles enter perpendicular to front surface:

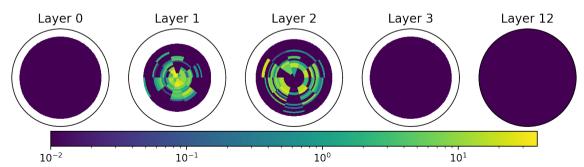




CaloChallenge Showers are voxelized in cylindrical coordinates.

- Showers are usually sparse.
- Energy depositions span several orders of magnitude.

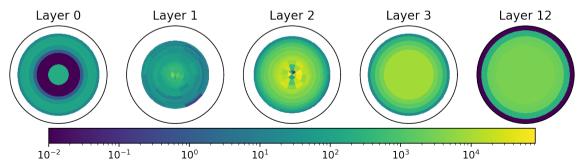
Photon shower at E = 1.0 GeV



CaloChallenge Showers are voxelized in cylindrical coordinates.

- Showers are usually sparse.
- Energy depositions span several orders of magnitude.

Photon shower at E = 1048.6 GeV



The Fast Calorimeter Simulation Challenge 2022

The main task: Develop a model that samples from $p(\text{shower}|E_{\text{incident}})$

https://calochallenge.github.io/homepage/

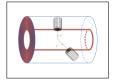
Michele Faucci Giannelli, Gregor Kasieczka, CK, Ben Nachman, Dalila Salamani, David Shih, and Anna Zaborowska

- Dataset 1: AtlFast3 trainig data [2109.02551, Comput.Softw.Big Sci.]
- $(\gamma: 368, \pi: 533 \text{ voxels})$ $E_{\rm inc} \in [256 \text{ MeV}, 4.2 \text{ TeV}]$
- Dataset 2. Par04 simulated detector
- $(e^-: 6480 \text{ voxels})$ $E_{inc} \in [1 \text{ GeV}, 1 \text{ TeV}]$

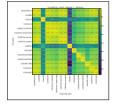
- Dataset 3: Par04 simulated detector
- $(e^-: 40500 \text{ voxels}) \ E_{inc} \in [1 \text{ GeV}, 1 \text{ TeV}]$

CaloChallenge 2022 — Final Evaluation and Lessons Learned

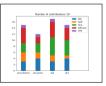
I: Datasets



II: Evaluation Metrics



III: Results



How to evaluate generative models?

In text / image / video generation: "by eye".

⇒ Our brains are incredible good at this task, but it doesn't scale.

8 / 25

imagined with Meta AI.

In high-energy physics: need to find something better!

- \Rightarrow We want to correctly cover p(x) of the entire phase space.
 - Can look at histograms of derived features / observables.
 - \Rightarrow To quantify, we use the *separation power* of high-level feature histograms:

$$S(h_1, h_2) = \frac{1}{2} \sum_{i=1}^{n_{\text{bins}}} \frac{(h_{1,i} - h_{2,i})^2}{h_{1,i} + h_{2,i}}$$

But: this is just a 1-dim projection!

A Classifier provides the "ultimate metric".

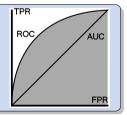
According to the Neyman-Pearson Lemma we have:

- The likelihood ratio is the most powerful test statistic to distinguish two samples.
- A powerful classifier trained to distinguish the samples should therefore learn (something monotonically related to) $w=\frac{p_{\rm data}}{p_{\rm model}}$.
- If this classifier is confused, we conclude $\Rightarrow p_{\text{data}}(x) = p_{\text{model}}(x)$
- ⇒ This captures the full phase space incl. correlations.

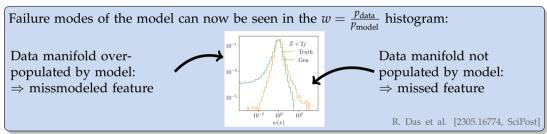
CK/D. Shih [2106.05285, PRD]

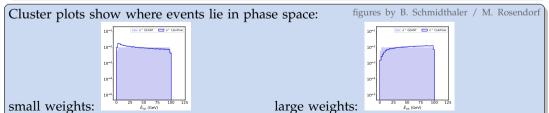
② Now, the AUC provides a single number to compare different models.

But: are AUCs of different models really comparable?



A Classifier tells us much more about the model.





How to decide which model is closest to the reference: the Multiclass Classifier

A multi-class classifier:

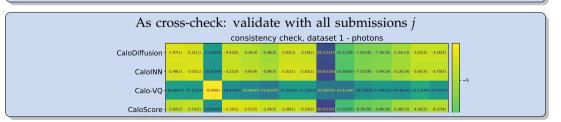
Train on submission 1 vs. submission 2 vs. ... vs. submission n and evaluate the *log posterior*:

$$L = \langle \log (p(x_{\text{eclass } i} | x_{\text{taken from } j})) \rangle$$

 $j \in \{\text{submission } k, \text{GEANT4}\}$

As metric: evaluate with GEANT4

Lim et al. [2211.11765, MNRAS]



Other quality metrics we looked at.

■ KPD/FPD.

Kansal et al. [2211.10295, Phys.Rev.D]

- Fréchet physics distance (FPD): Fréchet distance between Gaussian fits to obs.
- Kernel physics distance (KPD): kernel-based MMD between observables.
- Pearson Correlation between layer energies.

Ahmad et al. [2406.12898]

Precision / Recall / Density / Coverage.

Naeem et al. [2002.09797]

- How many "real" samples are close to "fake" manifold.
- How many "fake" samples are close to "real" manifold.

Other important metrics to look at.

- \Rightarrow The generation time.
- on CPU/GPU architectures
- for batch sizes 1 / 100 / 10000

- \Rightarrow The number of trainable parameters.
- as proxy for model size
- in training / generation

Other important metrics to look at.

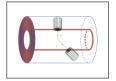
- \Rightarrow The generation time.
 - on CPU/GPU architectures
 - for batch sizes 1 / 100 / 10000

- \Rightarrow The number of trainable parameters.
 - as proxy for model size
 - in training / generation

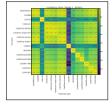
- start singularity container
- load model weights + biases
- generate samples
- save them to .hdf5

CaloChallenge 2022 — Final Evaluation and Lessons Learned

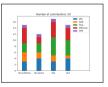
I: Datasets



II: Evaluation Metrics



III: Results

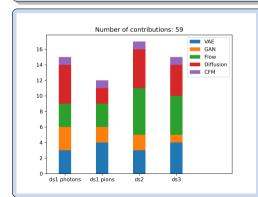


15 / 25

The preliminary final! results of the CaloChallenge

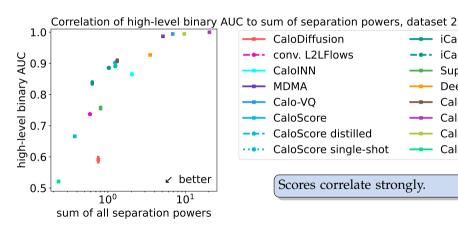
I will only be able to share some highlights of the results of the CaloChallenge.

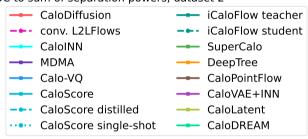
The final write-up, arXiv:2410.21611, has a lot more content!



- We received 59 submissions for all datasets.
- They were generated by 23 different models.
- All types of generative AI architectures were used.

Comparing different quality metrics: high-level features

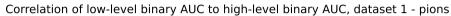


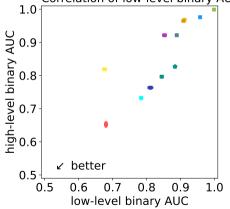


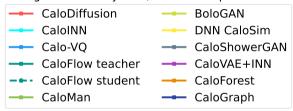
Scores correlate strongly.

17 / 25

Comparing different quality metrics: classifier input

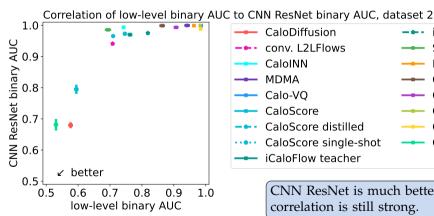


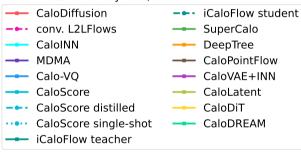




Scores correlate strongly, but 2 lines form. Interestingly: along the type of architecture!

Comparing different quality metrics: classifier architecture

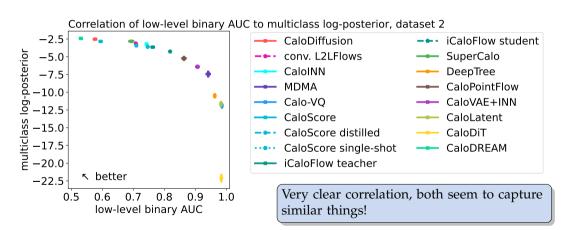




CNN ResNet is much better classifier, but correlation is still strong.

19 / 25

Comparing different quality metrics: binary vs. multiclass



 10^{1}

 10^{2}

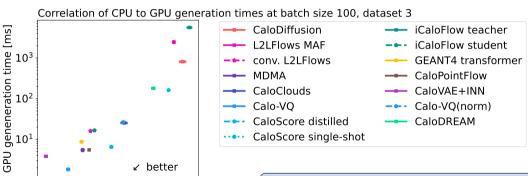
 10^{3}

CPU geneneration time [ms]

 $10^4 10^5$

20 / 25

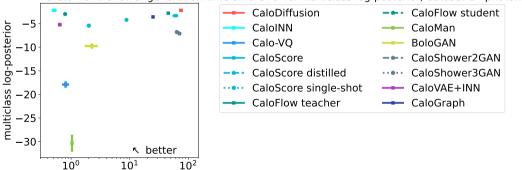
Comparing different timing metrics: CPU vs. GPU



GPU much faster, but times correlate.

21 / 25

Pareto Fronts: Quality vs. Generation Time



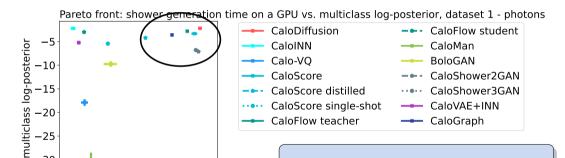
GPU generation time, batch size 100, in ms

-30

100

21 / 25

Pareto Fronts: Quality vs. Generation Time



GPU generation time, batch size 100, in ms

101

better

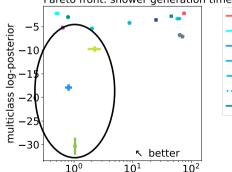
 10^{2}

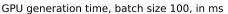
Diffusion models are good, but slow.

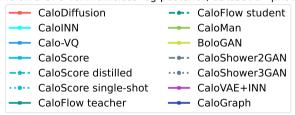
21 / 25

Pareto Fronts: Quality vs. Generation Time

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - photons







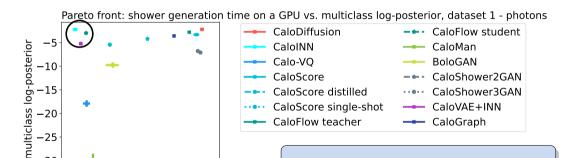
VAEs and GANs are fast, but not as good

-30

100

21 / 25

Pareto Fronts: Quality vs. Generation Time



GPU generation time, batch size 100, in ms

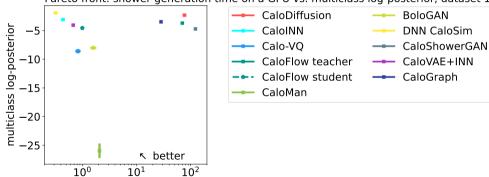
101

better

 10^{2}

Normalizing Flows sit in the sweet spot!

Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions

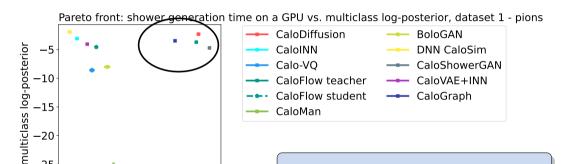


GPU generation time, batch size 100, in ms

-25

22 / 25

Pareto Fronts: Quality vs. Generation Time



 10^{1} GPU generation time, batch size 100, in ms

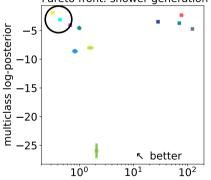
100

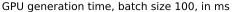
better

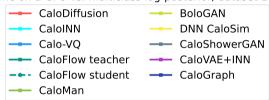
102

Diffusion models are again good, but slow.

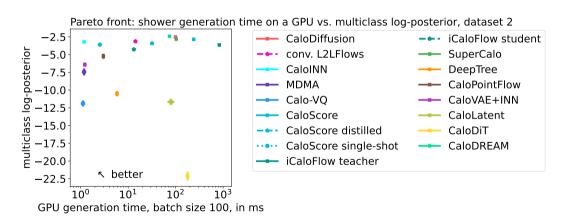
Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions

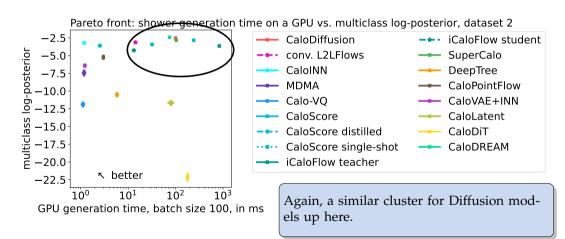




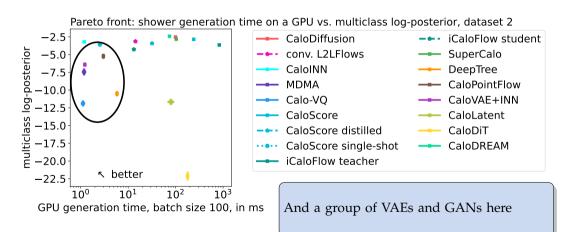


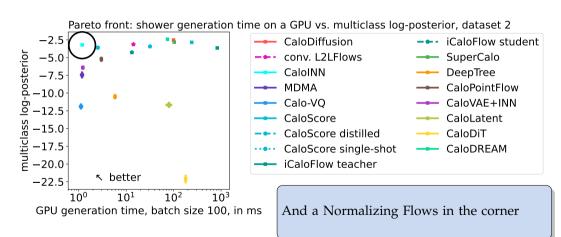
Normalizing Flows are still strong, but a VAE wins.





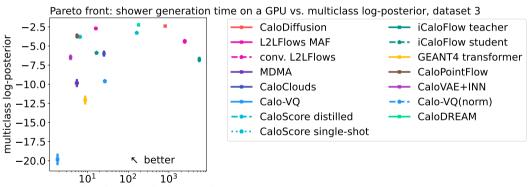
23 / 25





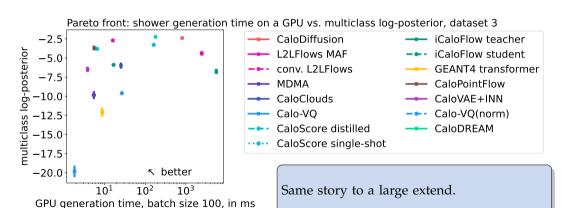
24 / 25

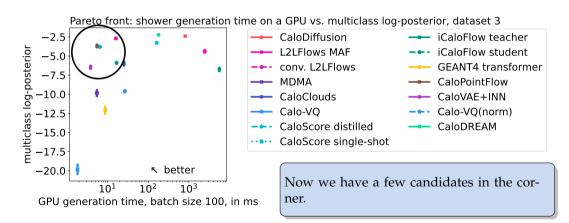
Pareto Fronts: Quality vs. Generation Time



GPU generation time, batch size 100, in ms

24 / 25





24 / 25

CaloChallenge 2022 — Final Evaluation and Lessons Learned

The CaloChallenge was well-received in the community:

- 20+ papers
- Even more talks at ML4Jets / ML 4 Physical Sciences@NeurIPS / CHEP / ...
- Many discussions and feedback on evaluation metrics etc.
- All repositories are public!

CaloChallenge 2022 — Final Evaluation and Lessons Learned

The CaloChallenge was well-received in the community:

- 20+ papers
- Even more talks at ML4Jets / ML 4 Physical Sciences@NeurIPS / CHEP / ...
- Many discussions and feedback on evaluation metrics etc.
- All repositories are public!

Final evaluation:

- Quality: Diffusion and CFM better than NF better than GAN/VAE.
- Speed: GAN/VAE faster than NF faster than Diffusion and CFM.

CaloChallenge 2022 — Final Evaluation and Lessons Learned

The CaloChallenge was well-received in the community:

- 20+ papers
- Even more talks at ML4Jets / ML 4 Physical Sciences@NeurIPS / CHEP / ...
- Many discussions and feedback on evaluation metrics etc.
- All repositories are public!

Final evaluation:

- Quality: Diffusion and CFM better than NF better than GAN/VAE.
- Speed: GAN/VAE faster than NF faster than Diffusion and CFM.

Lessons Learned:

- Various correlations between quality metrics for all datasets.
- Next step: embedding models in full fast simulation to see how trade-offs play out.

CaloChallenge 2022 — Final Evaluation and Lessons Learned

The CaloChallenge was well-received in the community:

- 20+ papers
- Even more talks at ML4Jets / ML 4 Physical Sciences@NeurIPS / CHEP / ...
- Many discussions and feedback on evaluation metrics etc.
- All repositories are public!

Thank you!

Final evaluation:

- Quality: Diffusion and CFM better than NF better than GAN/VAE.
- Speed: GAN/VAE faster than NF faster than Diffusion and CFM.

Lessons Learned:

- Various correlations between quality metrics for all datasets.
- Next step: embedding models in full fast simulation to see how trade-offs play out.