

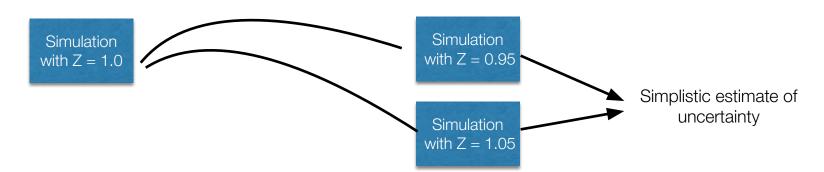
FAIR Universe: HiggsML Uncertainty Challenge

Wahid Bhimji, Paolo Calafiura, <u>Ragansu Chakkappai</u>, Yuan-Tang Chou, Sascha Diefenbacher, Jordan Dudley, Steven Farrell, Aishik Ghosh, Isabelle Guyon, Chris Harris, Shih-Chieh Hsu, Elham E Khoda, Benjamin Nachman, Peter Nugent, David Rousseau, Benjamin Sluijter, Benjamin Thorne, Ihsan Ullah, Po Wen, Yulei Zhang

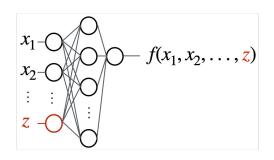
Bias and uncertainty in ML in HEP

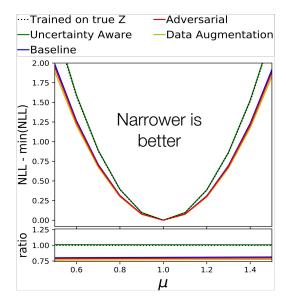
- ML methods in HEP are often trained based on simulation which has estimated systematic uncertainties ("Z")
- These are then applied in data with the different detector state Z=?

• Common baseline approach: Train classifier on nominal data (e.g. Z=1) and estimate uncertainties with alternate simulations. Shift Z and look at impact or perform full profile likelihood



- "pivot" Louppe, Kagan, Cranmer: <u>arXiv:1611.01046</u>
- "Uncertainty-aware" approach of Ghosh, Nachman, Whiteson <u>PhysRevD.104.056026</u>
 - Parameterize classifier using Z
 - Measured on "Toy" 2D Gaussian Dataset and dataset from <u>HiggsML</u>
 <u>Challenge</u> modified to include systematic on tau-energy scale
 - Performs as well as classifier trained on true Z
- Other novel approaches e.g. (not comprehensive)
 - o Inferno: <u>arxiv:1806.04743</u>
 - Direct profile-likelihood: e.g. <u>arxiv:2203.13079</u>
 - (Neuro) Simulation Based Inference has to include Z: arXiv:1911.01429

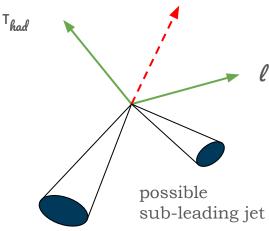




(Signal Strength)

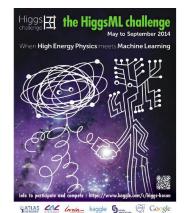
Fair Universe: HiggsML Uncertainty Challenge

- Extension of previous HiggsML challenge from 2014 (a classification problem for Higgs decaying to Tau leptons based on final state 3-momenta and derived quantities):
- New Fair Universe dataset, with following improvements
- Use (much) faster simulation
- Numbers of events 800.000 ⇒ ~280Millions
- Parameterized systematics
- Task: given a **pseudo-experiment** with given signal strength, provide a **Confidence Interval** on signal strength taking into account **statistics** and **systematics** uncertainties



Missing ET

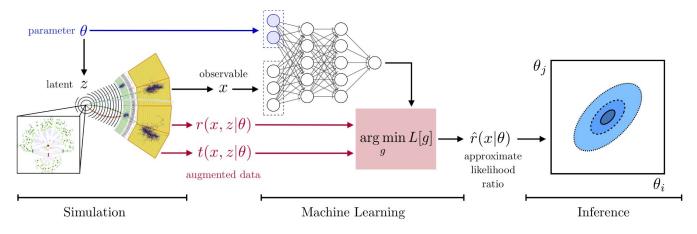
possible leading jet



- Full HiggsML Uncertainty Challenge Running from September 12 to March 14th
- Accepted as <u>NeurIPS competition</u> 2024
- Dedicated workshop at NeurIPS 2024 at December 14th, Saturday morning

Challenge Objective

- Train a AI model to improve cross section measurement significance
- The model will be tested with datasets with unknown systematics and signal strength μ . (μ =1 if Standard Model)
- For each pseudo-experiment participants must predict best mu estimate:
 - \circ μ_{hat} : best mu estimate
 - \circ $[\mu_{16}, \mu_{84}]$: 68% Confidence Interval



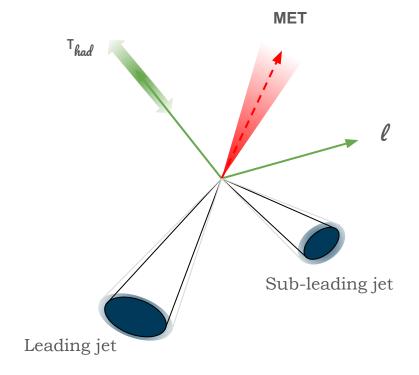
- Using the updated Delphes ATLAS card
- Less accurate than Madgraph/Sherpa + Geant4, but much faster
- Generated ~280 Million Events after initial cuts equivalent to 220 X 10fb-1
- Data generated using NERSC supercomputer.
- Data Organised into tabular form with **28** feature per event.

Process	Number Generated	LHC Events	210fb-1 Label	
Higgs	52101127	1015	signal	
Z Boson	221724480	1002395	background	
Di-Boson	2105415	3783	background	
$tar{t}$	12073068	44190	background	

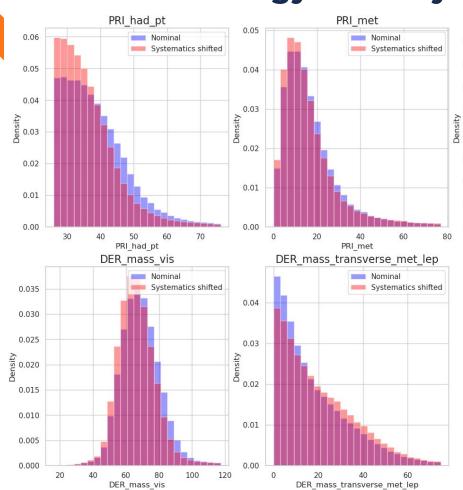
Apply parameterized systematics (Nuisance Parameters):

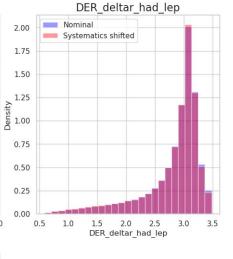
- Feature distortions:
 - Tau Energy Scale (and correlated MET)
 - Jet Energy Scale (and correlated MET impact)
 - Additional randomised Soft MET

- Event category normalisation
 - Background overall normalisation
 - Di-boson background normalisation
 - ttbar background normalisation



Tau Energy Scale Systematics Applied

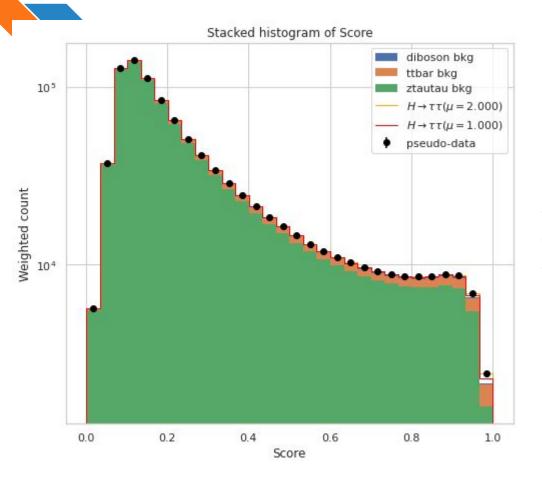




Histogram between nominal (TES = 1) and shifted (TES = 0.9)

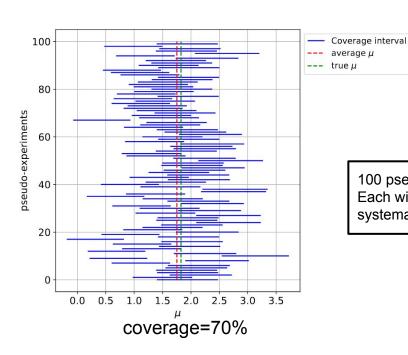
TES = 0.9, is an exaggeration, in practice it is sampled with a gaussian of 1 + -0.01

Simple Classifier



- Simple BDT Classifier
- No special training for systematics
- Histogram is what is obtained on one pseudo experiment

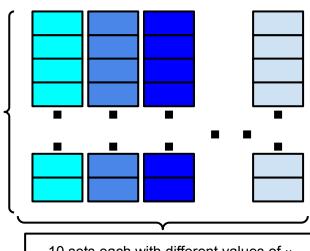
Coverage Evaluation



• Form multiple pseudo-experiment test sets: different signal strengths (µ) and systematics

- \circ 10 μ times 100 pseudo-experiments
- Task: predict uncertainty interval $[\mu_{16}, \mu_{84}]$
 - \circ E.g. 68% quantile of likelihood or assume 1σ

100 pseudo experiments Each with different systematics



10 sets each with different values of μ

Uncertainty Quantification Metric

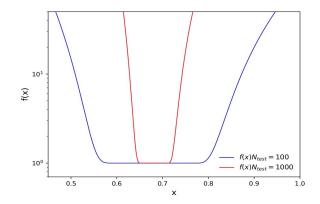
- Interval width (w) averaged over N test sets
- Coverage (c): fraction of time μ is contained
- Combined using a coverage function f(x):

$$x \geq 0.68 - 2\sigma_{68}$$
 and $x \leq 0.68 + 2\sigma_{68}$: $1.$ $x < 0.68 - 2\sigma_{68}$: $1 + |\frac{x - (0.68 - 2\sigma_{68})}{\sigma_{68}}|^4$ $x > 0.68 + 2\sigma_{68}$: $1 + |\frac{x - (0.68 + 2\sigma_{68})}{\sigma_{68}}|^3$ with $\sigma_{68} = \frac{\sqrt{(1 - 0.68)0.68N)}}{N}$

- N dependance for equivalent ideal coverage
- Penalizes undercoverage more
- Final score (s) designed to avoid large values or gaming

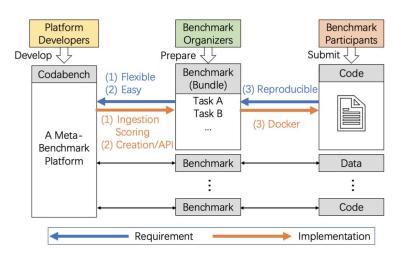
$$w = rac{1}{N} \sum_{i=0}^{N} |\mu_{84,i} - \mu_{16,i}|$$

$$c=rac{1}{N}\sum_{i=0}^{N}1 ext{ if}(\mu_{true,i}\in[\mu_{84,i}-\mu_{16,i}])$$



$$s = -\ln\left((w+\epsilon)f(c)
ight)$$

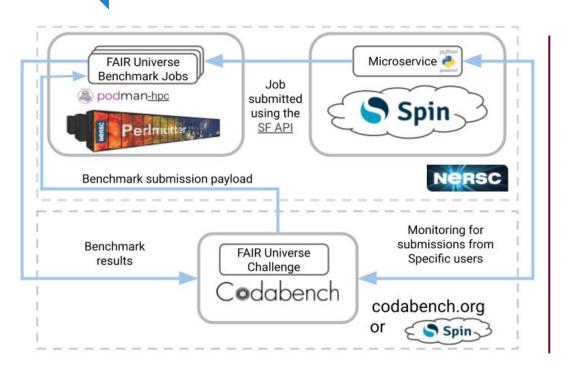
Codabench Platform



Codabench - open source platform for AI benchmarks and challenges

- Originally (CodaLab) Microsoft/Stanford now a Paris-Saclay/LISN led community
- > 600 challenges since 2013
- Completely open-ended competition design.
- Allows code submission as well as results e.g. for evaluation timing or reproducibility
- Also data-centric AI "inverted competitions"
- Queues for evaluation can run on diverse compute resources
- Platform itself can be deployed on different compute resources
- Ranked best challenge platform for ML by ML contests

Fair Universe Platform: Codabench-NERSC integration



System Specifications

Partition	# of nodes	СРИ	GPU
GPU	1536	1x AMD EPYC 7763	4x <u>NVIDIA A100</u> (40GB)
	256	1x AMD EPYC 7763	4x <u>NVIDIA A100</u> (80GB)

- Al challenge which addresses Systematic Uncertainty in HEP problem.
- Large Data Set with ~280M Events (signal + background)
- New Scoring to take Coverage and Confidence interval into account.
- Custom ingestion algorithm to test multiple pseudo-experiments in parallel.
- Large Computing Infrastructure as back_end
- You can enter the **HiggsML Uncertainty Challenge** now!
- You can win an invitation to NeurIPS workshop if meaningful participation by 15th Nov
 - https://www.codabench.org/competitions/2977/

Help and feedback: #higgsml-uncertainty-challenge channel on the Fair Universe Slack

Ongoing information Google Group: Fair-Universe-Announcements

Collaborations, questions, comments: fair-universe@lbl.gov

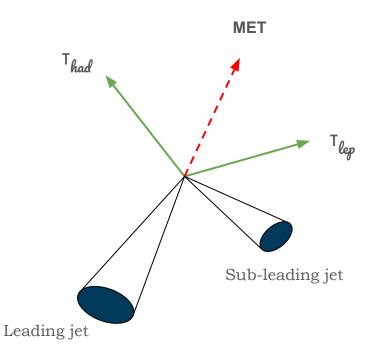
Ragansu Chakkappai, Sascha Diefenbacher and David Rousseau are here the full week, talk to us!

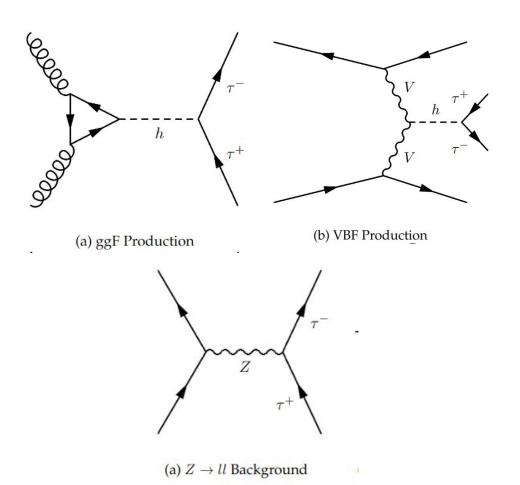


Back-up

- 3 year US Dept. of Energy, AI for HEP project. Aims to:
 - Provide an open, large-compute-scale AI ecosystem for sharing datasets, training large models, fine-tuning those models, and hosting challenges and benchmarks.
 - Organize a challenge series, progressively rolling in tasks of increasing difficulty, based on novel datasets.
 - Tasks will focus on measuring and minimizing the effects of systematic uncertainties in HEP (particle physics and cosmology).
- This funding went to LBL, NERSC, U Washington, and Chalearn (Isabelle Guyon's Non-Profit US Organisation).

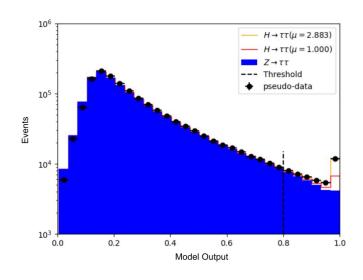
Introduction



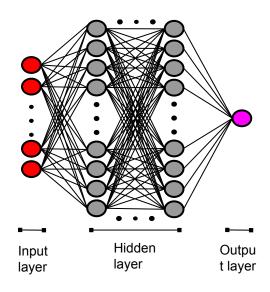


Basic Algorithm

- Divide data into train_set and holdout_set
- 2. Use train_set to Train the simple dense NN
- 3. Define S_i and B_i : predicted score bin content
- 4. Construct for S_i (α) and B_i (α) functions from $holdout_set$
- 5. Combine define Binned Negative Log Likelihood function as function of NPs and μ
- 6. For Each pseudo experiment
 - a. Predict score for pseudo experiment
 - b. Use Minuit to find value of mu, sigma_mu and NP
 - c. Returns
 - mu hat
 - \blacksquare $p16 = mu sigma_mu$
 - \blacksquare p84 = mu + sigma_mu

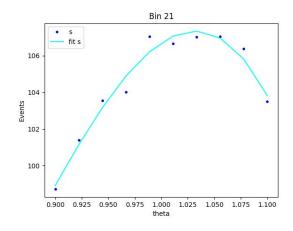


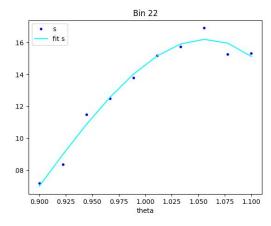
- PyTorch NN Classifier is Trained to distinguish Signal (Higgs) from Background (Z)
- 32 features,
- Architecture
 - 3 Hidden layers with 100 nodes
 - 1 Output node
 - ReLU Activation between layers
 - L2 Regularization during training
- Model return score between 0 (background) and 1(signal),

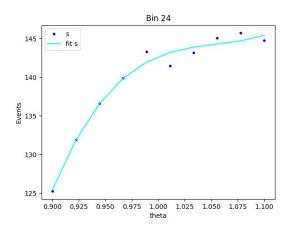


Parameterisation of $S(\alpha)$

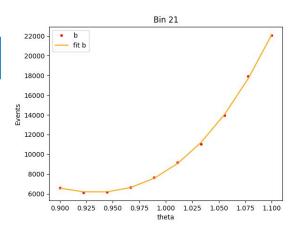
With the help of the holdout_set for we get values of S and B for each NP in each bin. A polynomial function is used to fit them. This function is later used in the NLL formalism

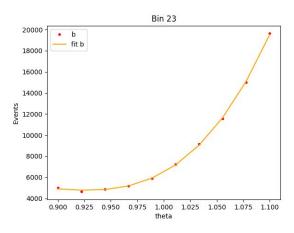


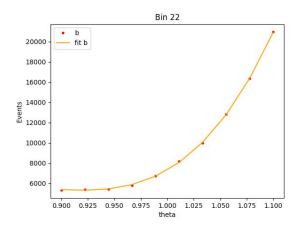


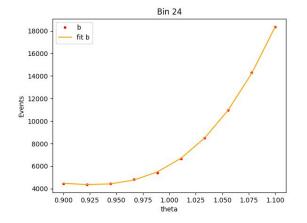


Parameterisation of B(alpha)









Profile μ and α simultaneously

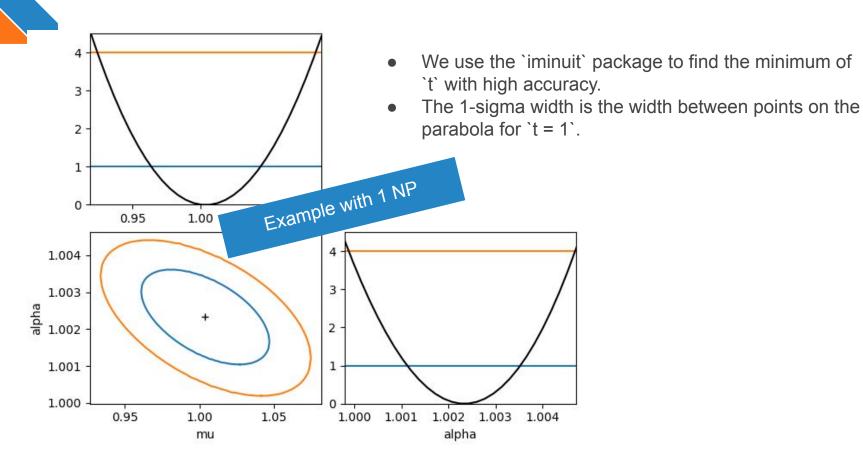
$$L(\mu, \vec{\alpha} | \mathcal{D}) = \prod_{i=1}^{N_{\text{bins}}} \frac{(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha}))^{n_i} e^{-(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha}))}}{n_i!}$$

$$\Rightarrow t_{\mu, \vec{\alpha}} = -2 \log (L(\mu, \vec{\alpha} | \mathcal{D}))$$

$$= -2 \sum_{i=1}^{N_{\text{bins}}} n_i \log(\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha})) + (\mu S_i(\vec{\alpha}) + B_i(\vec{\alpha}))$$

L here is the likelihood estimator which depends on μ and α , where α is a vector of 5 NP thus the μ at which L is maximum or t is minimum is the predicted μ ,

NLL curve and contour



Leaderboard so far

Results

Task:					Fact Sheet Answers	Higgs NeurIPS Task 10x100				
#	Participant	Entries	Date	ID	Method Name	Quantile Score	Interval	Coverage	RMSE	Run Time (mins
5	jdudley	2	2024- 10-15 23:23	91180	game	-0.68	1.97	0.68	2.42	7.0
0	benevedes	2	2024- 10-07 19:30	87099	Test submission	-5.67	1.67	0.6	n/a	7.0
3	avencast	7	2024- 10-17 13:21	92509	xgboost correct 2.0	-8.19	4.02	0.85	15.66	8.0