Differentiable MadNIS-Lite

Theo Heimel November 2024

CP3, UCLouvain

[2408.01486] TH, Mattelaer, Plehn, Winterhalder

I UCLouvain

UNIVERSITÄ HEIDELBERG 7UKUNF SEIT 1386

Differentiable programming @ LHC

Applications of fully differentiable LHC simulation chain

Differentiable programming @ LHC

MadNIS: Neural Importance Sampling

Differentiable MadNIS

MadNIS Training

Inverse loss

Only possible with differentiable integrand

$$L_F^{\text{inv}} = \left\langle F\left(\frac{f(\overline{G}_{\theta}(z))}{\overline{g}_{\theta}(z)}\right) \right\rangle_{z \sim p_0(z)}$$

Arbitrary f-divergence: KL, RKL, variance

using RAMBO on diet

Forward vs inverse loss

- forward losses perform better than inverse losses
- Side result: KL performs better than variance, however not compatible with trainable channel mappings

- Alternative use for gradients: derivative matching loss $L^{\text{fw}} \to L^{\text{fw}} + \lambda \left\langle \left| \partial_x \log f(x) - \partial_x \log g_{\theta}(x) \right|^2 \right\rangle$
- Sometimes small improvements over normal forward loss
- Additional cost of gradient evaluation not amortized

Derivative matching loss

MadNIS-Lite

• Standard construction of PS-mappings from Feynman diagrams

Phase space library based on PyTorch

Fully differentiable + invertible

- → can build in trainable components
- → include in MadNIS training

- Add small trainable components based on RQ spline transformations
 - Condition on context \rightarrow COM energy, decay energy, ...
 - **Tiny number of parameter:** shared
 - \rightarrow between all components of same type
 - \rightarrow between all channels

Trainable components

apping	Parameters	Conditions
me-like invariants, Eqs.(39),(40) eparate for massless and assive propagators)	190	partonic CM energy $\sqrt{\hat{s}/s_{\text{lab}}}$ minimal decay CM energy $\sqrt{s_{\text{min}}/s}$ maximal decay CM energy $\sqrt{s_{\text{max}}/s}$
\rightarrow 2 scattering, Eq.(43)	798	correlations between z_t , z_{ϕ} partonic CM energy $\sqrt{\hat{s}/s_{\text{lab}}}$ scattering CM energy $\sqrt{p^2/s_{\text{lab}}}$ virtualities $\sqrt{k_{1,2}^2/s_{\text{lab}}}$
me-like invariants for eudo-particles, Eq.(<mark>45</mark>)	190	partonic CM energy $\sqrt{\hat{s}/s_{\text{lab}}}$ minimal energy $\sqrt{s_{\text{min}}/s_{\text{lab}}}$ maximal energy $\sqrt{s_{\text{max}}/s_{\text{lab}}}$
→ 2 decay, Eq.(<mark>46</mark>)	380	correlations between z_{θ} , z_{ϕ} partonic CM energy $\sqrt{\hat{s}/s_{\text{lab}}}$ decay CM energy $\sqrt{p^2/s_{\text{lab}}}$
OF convolutions, Eq.(48)	114	correlations between z_{τ} , z_{x_1}

Total: 1672 parameters

Performance

- trained for n jets, used for n+1 jets \rightarrow performance like VEGAS (2) \rightarrow cheap training

channel-specific training ①

further improvements for VEGAS trained on top of MadNIS-Lite

Interpretability

Massless propagator s-invariant

- still room for improvement in underlying mapping
- t-invariant: large dependence on p^2

$2 \rightarrow 2$ scattering t-invariant

s-invariant: small energy-dependence, easily learned by VEGAS,

Outlook

- MadNIS training: only small benefits from differentiable ME
 → additional computational cost of gradients not amortized
- MadNIS-Lite: middle ground between VEGAS and MadNIS
 → generalizes from n jets to n+1 jets
 → interpretability to improve phase space mappings
- Many other applications of gradients, e.g. SBI, tuning, ...
 → make gradients easily available in future MadGraph versions

