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Differentiable programming @ LHC

Applications of fully differentiable LHC simulation chain

More sample efﬁuent SBI Tune model parameters
Optlmlzed detector design
training In MadMiner directly on data 'MODE collaboration]
[1805.12244] [see also MLHAD]




Differentiable programming @ LHC

Applications of fully differentiable LHC simulation chain

Previous study on D @

differentiable Can our MadNIS Can we use
matrix elements: training profit from differentiability
MadJax [2203.00057} gradient information? to improve phase
- promising results space mappings?




MadNIS: Neural Importance Sampling
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Differentiable MadNIS
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Based on previous implementations in Jax and TF:
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MadNIS Training

PS points Loss
x ) L(f(x), %)

Density |4
8,(X)
Forward loss Inverse loss

Regular MadNIS training Only possible with
differentiable integrand

pov = (8 pf ) g = { p( 1C
q(x) go(x) go(2)
x~q(x) z~po(z)

Arbitrary f-divergence: KL, RKL, variance




Example process

. Example process: ud - WTW+HW~-

ud - WIWHW- (@13 TeV)
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Forward vs inverse loss
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variance KL, RKL varance KL, RKL

o forward losses perform better than inverse losses

e Side result: KL performs better than variance,
however not compatible with trainable channel mappings



Derivative matching loss
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o Alternative use for gradients: derivative matching loss

LN = 1%+ 4(10,log f0) - d,log g )
x~q(x

e Sometimes small improvements over normal forward loss

* Additional cost of gradient evaluation not amortized



MadNIS-Lite

e Standard construction of PS-mappings
from Feynman diagrams
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?52 < u (k2) l
s 52 "y, Example:
5 W+jets
" W (ka)
g (p2) T s d (ks)

 Phase space library based on PyTorch

* Fully differentiable + invertible
- can build in trainable components
- Include in MadNIS training
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Trainable components

e Add small trainable components
based on RQ spline transformations

e Condition on context
- COM energy, decay energy, ...

e Tiny number of parameter: shared
- between all components of same type
- between all channels
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Trainable components

Mapping Parameters Conditions

Time-like invariants, Egs.(39),(40) 190 partonic CM energy +/5/sy.,
(separate for massless and minimal decay CM energy /Smin/Siab
massive propagators) maximal decay CM energy 4/Smax/Siab
2 — 2 scattering, Eq.(43) 798 correlations between z, 2,

partonic CM energy +/$/sjap
scattering CM energy 1/ p2/s;.p

virtualities \/ k2 /Stab

Time-like invariants for 190 partonic CM energy +/S/si.p
pseudo-particles, Eq.(45) minimal energy /s, /Siab

maximal energy /Smax/Siab

1 — 2 decay, Eq.(46) 380 correlations between zy, 2,

partonic CM energy +/$/syap
decay CM energy +/p2/siap

PDF convolutions, Eq.(48) 114 correlations between 2., 2,

Total: 1672 parameters
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good performance even though no
channel-specific training (D

trained for n jets, used for n+1 jets
- performance like VEGAS @
- cheap training

further improvements for VEGAS
trained on top of MadNIS-Lite
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Interpretability

Massless propagator 22 scattering
S-Invariant t-invariant
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e s-invariant: small energy-dependence, easily learned by VEGAS,
still room for Improvement in underlying mapping

e t-Invariant: large dependence on p2
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Outlook

e MadNIS training: only small benefits from differentiable ME
- additional computational cost of gradients not amortized

* MadNIS-Lite: middle ground between VEGAS and MadNIS

- generalizes from n jets to n+1 jets
- Interpretability to Improve phase space mappings

 Many other applications of gradients, e.g. SBI, tuning, ...
- make gradients easily available in future MadGraph versions
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