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ℒ
Theory Shower EventsHard process Hadronization Detectors

Applications of fully differentiable LHC simulation chain

More sample-efficient SBI 
training in MadMiner 

[1805.12244]

Tune model parameters 
directly on data 

[see also MLHAD]

Optimized detector design 
[MODE collaboration]



Differentiable programming @ LHC
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ℒ
Theory Shower EventsHard process Hadronization Detectors

Applications of fully differentiable LHC simulation chain

② 
Can we use 

differentiability 
to improve phase 
space mappings?

① 
Can our MadNIS 

training profit from 
gradient information?

Previous study on 
differentiable 

matrix elements: 
MadJax [2203.00057] 
→ promising results



MadNIS: Neural Importance Sampling
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Differentiable MadNIS

5Latent space z

Analytic Channel 
mapping

 Φ ⊆ ℝN
Phase space

Normalizing 
Flow

 
U = [0,1]N

Unit hypercube

dσ
dΦ

=
1

flux
f(xa) f(xb) ⟨ ∣Mλ,c,…(pa, pb ∣ p1, …, pn) ∣2 ⟩

Fully differentiable MadGraph using PyTorch 

Based on previous implementations in Jax and TF: 
PDFFlow [2009.06635], MadFlow [2106.10279], 
MadJax [2203.00057]

Differentiable 
phase space

Differentiable 
parton densities

Differentiable 
 matrix elements



MadNIS Training
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Sample 
y

PS points
x

Integrand
f(x)

Density

LossG−1(y |φ)

gφ(x)

L( f(x), gφ(x))

Inverse loss 

Only possible with 
differentiable integrand 

Linv
F = ⟨F( f(Gθ(z))

gθ(z) )⟩
z∼p0(z)

Forward loss 

Regular MadNIS training 

Lfw
F = ⟨ gθ(x)

q(x)
F( f(x)

gθ(x) )⟩
x∼q(x)

Arbitrary f-divergence: KL, RKL, variance



Example process
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Figure 3: Relative contributions of the channels for W+2jets and Triple-W production, and for
the channel groups for W+3jets and VBS. The channel weights are defined by MG5AMC, their
weights are learned by MADNIS. An empty circle indicates a dropped channel.

the group.

In Fig. 3, we show the contribution of MADNIS channels or channel groups, compared to
the initial MG5AMC assignments. We mark dropped channels with empty circles, the number
of remaining active channels corresponds to Tab. 1. We see that MADNIS prefers much fewer
channels, illustrating the benefit of our channel dropping feature.

For VBS and Triple-W production, MADNIS adapts the channel weights in a way that the
integrand is almost completely made up from a single group of symmetry-related channels.
The general behaviour and the specific choice of channels is consistent between repetitions
of the training. The Feynman diagrams corresponding to these channels are shown in Fig. 4.
For VBS five channel groups significantly contribute to the integral in MG5AMC, all of them
with a t-channel gluon or photon. Of those, MADNIS enhances the QCD contribution O(ω2

sω
2)

without an s-channel quark propagator. For Triple-W production, one channel group already
dominates the integral in MG5AMC, and it is further enhanced by MADNIS. We give an example
for the distribution learned by the learned channel weights as a function of phase space in
Appendix B.
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• Example process:  

 

• Last MadNIS paper: 
single channel is sufficient 

• Flat, differentiable phase space 
using RAMBO on diet

ud → W+W+W−SciPost Physics Submission

c

u

W+

s

d

W+

g

d̄

u

W+

W+

W≠

Z

Figure 4: Feynman diagrams corresponding to the dominant channels after training MADNIS
for VBS (left) and Triple-W production (right).

3.4 Scaling with jet multiplicity

The last challenge of modern event generation MADNIS needs to meet is large number of
additional jets. We study the scaling of the MADNIS performance with the number of gluons in
the final state for W+jets and t̄t+jets production. Again, we use the relative standard deviation
ω/I and the unweighting efficiency ϵ as performance metrics. As for the final result in Fig. 2,
we train MADNIS with all features, including buffered training with R@ = 5. The results are
shown in Fig. 5. While the unweighting efficiency decreases and standard deviation increases
towards higher multiplicities, the gain over VEGAS and MG5AMC remains roughly constant for
W+jets production. For the even more challenging t̄t+jets production the gain decreases for
three jets, defining a remaining task for the final, public release of MADNIS.

4 Outlook

We have, for the first time, shown that modern machine learning leads to a significant speed
gain in MG5AMC. We have improved the MADNIS method [20] and implemented it in MG5AMC,
to be able to quantify the performance gain from a modern ML-treatment of phase space sam-
pling. This implementation will allow us to use the entire MG5AMC functionality while devel-
oping an ultra-fast event generator for the HL-LHC.

Starting from a combined training of a learnable phase space mapping encoded in an INN
and learnable channel weights encoded in a simple regression network, we have added a series
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Figure 5: Relative standard deviation and unweighting efficiency for W+jets and t̄t+jets with
different numbers of gluons in the final state. The final MADNIS performance gain is illustrated
in the lower panels, just as in Fig. 2.
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Forward vs inverse loss
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Figure 2: Relative standard deviations (left) and unweighting efficiencies (right) for
different loss functions.

RKL losses used for forward training lead to similar results, but the KL-divergence outperforms
them. Also, in terms of unweighting efficiency, forward training with a KL-loss leads to the
best results. The fact that RKL gives the worst unweighting efficiency is related to overweights,
which the RKL does not penalize. This comparison has to be taken with a grain of salt, because
the performance of forward training based on the variance and the KL-divergence are close
in performance. An additional aspect we have to factor in is that a multi-channel loss can
only be constructed using the variance, whereas the KL-divergence might be most suitable for
single-channel integrals.

Additional derivatives

When using differentiable integrands, we can also evaluate an additional derivative matching
term (also called score or force matching [99]) for each forward loss introduced above,

Lfw! Lfw +�
⌦
|@x log f (x)� @x log g✓ (x)|2

↵
x⇠q(x) . (30)

The relative strength of the derivative term, �, is a hyperparameter. In Fig. 3, we show the
same triple-W results as in Fig. 2, but including derivative matching with different strengths
�. For the variance and RKL losses, we see slight improvements in the results from the deriva-
tive matching. However, it turns out that it comes with less stable training. Altogether, the
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Figure 3: Relative standard deviations (left) and unweighting efficiencies (right) for
different derivative matching coefficients.
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• forward losses perform better than inverse losses 

• Side result: KL performs better than variance, 
however not compatible with trainable channel mappings

be
tt

er
better



Derivative matching loss
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Figure 2: Relative standard deviations (left) and unweighting efficiencies (right) for
different loss functions.

RKL losses used for forward training lead to similar results, but the KL-divergence outperforms
them. Also, in terms of unweighting efficiency, forward training with a KL-loss leads to the
best results. The fact that RKL gives the worst unweighting efficiency is related to overweights,
which the RKL does not penalize. This comparison has to be taken with a grain of salt, because
the performance of forward training based on the variance and the KL-divergence are close
in performance. An additional aspect we have to factor in is that a multi-channel loss can
only be constructed using the variance, whereas the KL-divergence might be most suitable for
single-channel integrals.

Additional derivatives

When using differentiable integrands, we can also evaluate an additional derivative matching
term (also called score or force matching [99]) for each forward loss introduced above,

Lfw! Lfw +�
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|@x log f (x)� @x log g✓ (x)|2

↵
x⇠q(x) . (30)

The relative strength of the derivative term, �, is a hyperparameter. In Fig. 3, we show the
same triple-W results as in Fig. 2, but including derivative matching with different strengths
�. For the variance and RKL losses, we see slight improvements in the results from the deriva-
tive matching. However, it turns out that it comes with less stable training. Altogether, the
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different derivative matching coefficients.
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• Alternative use for gradients: derivative matching loss 
 

• Sometimes small improvements over normal forward loss 
• Additional cost of gradient evaluation not amortized

Lfw → Lfw + λ ⟨ |∂x log f(x) − ∂x log gθ(x) |2 ⟩x∼q(x)

better
be

tt
er



• Standard construction of PS-mappings 
from Feynman diagrams 

 

• Phase space library based on PyTorch 

• Fully differentiable + invertible 
→ can build in trainable components 
→ include in MadNIS training
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Figure 8: An example Feynman diagram contributing to the gg→ W+ūdgg process
(left) and an illustration of the corresponding phase-space parametrization (right).

RKL Loss

For the expectation value of the gradient, we obtain for both directions

↑ωLfw
RKL =↑ωLinv

RKL =
ω2 ↓ 1
ω

. (65)

While for the variance of the gradient, we obtain

Var
!
↑ωLfw

RKL

"
=

21↓ 54ω2 + 37ω4 + 4 log(ω ) (3↓ 5ω2 + logω )
2ω2

(66)

Var
!
↑ωLinv

RKL

"
= 2ω2 . (67)

In Fig. 7, we illustrate the gradient variances for the forward and inverse training for the
different loss functions. The upper panels show the absolute gradient variance, while the
lower panel shows the ratio between the forward and inverse directions. A ratio of r > 1
means the gradient variance of the forward training is larger than the gradient variance of the
inverse training. For the variance loss and KL divergence, we can observe that the forward
training yields the more stable training. Only in parameter regions around the optimal value,
i.e. ω ↔ ωopt = 1 the inverse training is more stable. In contrast, for the RKL divergence, the
picture changes and the inverse loss gives less noisy gradients.

C Explicit channel mapping

As an example, we consider W+ 4 jets production

gg→W+ūdgg . (68)

In particular, we investigate the Feynman diagram of Fig. 8, because it involves all types of
phase-space blocks introduced in Sec. 4. We define

k23 = k2 + k3 k234 = k2 + k3 + k4 k1234 = k1 + k2 + k3 + k4

q1 = p1 ↓ k1 q2 = p2 ↓ k5 p = p1 + p2 .
(69)

The infrared and collinear singularities are excluded by a lower cut on k2
23 > k2

23,min. The
phase-space integral

∫
dω2→5
$$
Fig.8 =

ŝ∫

k2
23,min

dk2
23

ŝ∫

k2
23

dk2
234

ŝ∫

k2
234

dk2
234

∫
dω2→2(p1, p2; k2

1234, k2
5)

↗
∫

dω2→2(p1, q2; k2
1, k2

234)
∫

dω1→2(k234; k2
23, k2

4)
∫

dω1→2(k23; k2
2, k2

3) .

(70)
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MadNIS-Lite
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PDF convolutions

For the PDF convolutions, we introduce ⌧ = x1 x2, such that the squared partonic CM energy
is given by ŝ = ⌧s. This allows us to write

1Z

0

dx1dx2⇥(ŝ� ŝmin) =

1Z

⌧min

d⌧

1Z

⌧

dx1

x1
=

1Z

0

dz⌧dzx1

glumi(⌧,⌧min)

with glumi(⌧,⌧min) =
1

⌧ log⌧ log⌧min
,

(47)

where ŝmin follows from final-state masses and cuts and we sample

⌧= ⌧1�z⌧
min and x1 = ⌧

zx1 . (48)

The induced density glumi exactly cancels the flux factor ⌧�1 in Eq.(32). If there are no t-
channels, i.e. = 0, the squared CM energy ŝ also belongs to a propagator in the diagram. In
this case, it is beneficial to sample ⌧ such that this propagator structure is mapped out.

Each of the s-invariants, 2 ! 2 scatterings, and decay blocks described above transform
one or two random numbers. They can appear multiple times for a given Feynman diagram,
as illustrated in Fig. 4. In Appendix C, we illustrate how these components are combined to
parametrize a complete channel mapping for W+ 4 jets production.

4.2 Learnable bilinear spline flows

For typical a MADNIS training, the flow sub-networks often encode relatively simple functions.
For these cases, we introduce bilinear spline flows to replace the sub-networks with second-
order polynomials. A dx -dimensional transformation x$ z with a dc-dimensional condition

t1

x1
x2

t�

t2
d�1�2

d�1�2d�1�2

s4

s1

s2

s3 d�1�2

d�1�2

d�1�2

si d�1�2d�1�2

Figure 4: Topological diagram illustrating our separable and differentiable phase-
space mappings. Each colored block represents one of the introduced components
which can be modified by a trainable bilinear flow.
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Example: 
W+jets



Trainable components
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PDF convolutions

For the PDF convolutions, we introduce ⌧ = x1 x2, such that the squared partonic CM energy
is given by ŝ = ⌧s. This allows us to write

1Z

0

dx1dx2⇥(ŝ� ŝmin) =

1Z

⌧min

d⌧

1Z

⌧

dx1

x1
=

1Z

0

dz⌧dzx1

glumi(⌧,⌧min)

with glumi(⌧,⌧min) =
1

⌧ log⌧ log⌧min
,

(47)

where ŝmin follows from final-state masses and cuts and we sample

⌧= ⌧1�z⌧
min and x1 = ⌧

zx1 . (48)

The induced density glumi exactly cancels the flux factor ⌧�1 in Eq.(32). If there are no t-
channels, i.e. = 0, the squared CM energy ŝ also belongs to a propagator in the diagram. In
this case, it is beneficial to sample ⌧ such that this propagator structure is mapped out.

Each of the s-invariants, 2 ! 2 scatterings, and decay blocks described above transform
one or two random numbers. They can appear multiple times for a given Feynman diagram,
as illustrated in Fig. 4. In Appendix C, we illustrate how these components are combined to
parametrize a complete channel mapping for W+ 4 jets production.

4.2 Learnable bilinear spline flows

For typical a MADNIS training, the flow sub-networks often encode relatively simple functions.
For these cases, we introduce bilinear spline flows to replace the sub-networks with second-
order polynomials. A dx -dimensional transformation x$ z with a dc-dimensional condition

t1

x1
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t�

t2
d�1�2

d�1�2d�1�2
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Figure 4: Topological diagram illustrating our separable and differentiable phase-
space mappings. Each colored block represents one of the introduced components
which can be modified by a trainable bilinear flow.
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• Add small trainable components 
based on RQ spline transformations 

• Condition on context 
→ COM energy, decay energy, … 

• Tiny number of parameter: shared 
→ between all components of same type 
→ between all channels
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PDF convolutions

For the PDF convolutions, we introduce ⌧ = x1 x2, such that the squared partonic CM energy
is given by ŝ = ⌧s. This allows us to write

1Z

0

dx1dx2⇥(ŝ� ŝmin) =

1Z

⌧min

d⌧

1Z

⌧

dx1

x1
=

1Z

0

dz⌧dzx1

glumi(⌧,⌧min)

with glumi(⌧,⌧min) =
1

⌧ log⌧ log⌧min
,

(47)

where ŝmin follows from final-state masses and cuts and we sample

⌧= ⌧1�z⌧
min and x1 = ⌧

zx1 . (48)

The induced density glumi exactly cancels the flux factor ⌧�1 in Eq.(32). If there are no t-
channels, i.e. = 0, the squared CM energy ŝ also belongs to a propagator in the diagram. In
this case, it is beneficial to sample ⌧ such that this propagator structure is mapped out.

Each of the s-invariants, 2 ! 2 scatterings, and decay blocks described above transform
one or two random numbers. They can appear multiple times for a given Feynman diagram,
as illustrated in Fig. 4. In Appendix C, we illustrate how these components are combined to
parametrize a complete channel mapping for W+ 4 jets production.

4.2 Learnable bilinear spline flows

For typical a MADNIS training, the flow sub-networks often encode relatively simple functions.
For these cases, we introduce bilinear spline flows to replace the sub-networks with second-
order polynomials. A dx -dimensional transformation x$ z with a dc-dimensional condition
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Figure 4: Topological diagram illustrating our separable and differentiable phase-
space mappings. Each colored block represents one of the introduced components
which can be modified by a trainable bilinear flow.
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c can be written as

z = G(x; W ĉ) with ĉ =

0
@

1
ci

ci c j

1
A for i  j , (49)

where G is a rational quadratic spline transformation and W is a trainable matrix. The number
of trainable parameters for such a transformation with nb bins is

dW = (3nb + 1)⇥ dx ⇥
Å

1+ dc +
1
2

dc(dc + 1)
ã

. (50)

This way, we can build small and fast, but sufficiently expressive trainable transformations for
a small number of dimensions dx and dc . Another benefit is the interpretability of bilinear
spline flows because W tells us how strongly the spline transformation is correlated with the
conditional inputs.

We can combine these trainable mappings with the propagator, decay, scattering, and PDF
blocks introduced above and use them to transform their uniform random number input. For
mappings with two random numbers, we allow for correlations between the two dimensions.
Because all parts of the phase-space mappings are differentiable, the bilinear flow can even be
conditional on intermediate physical features that are available only during the evaluation of
the phase-space mapping. This enhances the expressivity and interpretability of the learned
transformation.

Implementation

We implement the trainable bilinear spline flows with 6 spline bins. We list the trainable com-
ponents of the phase space mappings, the conditional features, and the number of trainable
parameters in Tab. 1. These parameters are shared between channels and multiple instances
of the same block in one channel. This way, the number of trainable parameters stays the same
for different processes and allows the use of mappings trained on one process, like W+3 jets,

Mapping Parameters Conditions

Time-like invariants, Eqs.(39),(40) 190 partonic CM energy
p

ŝ/slab

(separate for massless and minimal decay CM energy
p

smin/slab

massive propagators) maximal decay CM energy
p

smax/slab

2! 2 scattering, Eq.(43) 798 correlations between zt , z�
partonic CM energy

p
ŝ/slab

scattering CM energy
p

p2/slab

virtualities
q

k2
1,2/slab

Time-like invariants for 190 partonic CM energy
p

ŝ/slab

pseudo-particles, Eq.(45) minimal energy
p

smin/slab

maximal energy
p

smax/slab

1! 2 decay, Eq.(46) 380 correlations between z✓ , z�
partonic CM energy

p
ŝ/slab

decay CM energy
p

p2/slab

PDF convolutions, Eq.(48) 114 correlations between z⌧, zx1

Table 1: Trainable components
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Figure 5: Improvement of the unweighting efficiency and relative standard deviation
of different setups with respect to an untrained phase space mapping refined with
VEGAS for W+jets (left) and t̄t+jets (right).

for reasonably related other processes. Note that for processes like W+4 jets (t̄t+3 jets) with
up to 384 (945) integration channels, this parameter sharing reduces the computational cost
significantly.

We train MADNIS-Lite using the multi-channel variance loss from Eq.(14), but without
trainable channel weights. We use stratified training to focus the available training samples
on channels with a large contribution to the total cross section, and buffered training to reduce
the number of integrand evaluations. The training hyperparameters are given in Tab. 3.

Performance

In Fig. 5, we compare the unweighting efficiencies and relative integration errors for different
scenarios and different processes. Throughout all considered processes, we benchmark our
trained mappings against the raw mappings combined with and without VEGAS. The shown
error bars were obtained by running the integration, including VEGAS optimization if applica-
ble, ten times and taking the mean and standard deviation. All results are shown relative to
the VEGAS performance without trained mappings.

We start by considering the W+ 3 jets process in the upper left plot of Fig. 5. The trained
mappings without additional VEGAS optimization outperform the raw phase-space mapping
but are a bit worse than the VEGAS optimized mappings. This is because the number of train-
able parameters of our bilinear flow is quite small as it is shared among multiple channels and
building blocks, see Tab. 1. In contrast, VEGAS builds an independent grid for each channel
and phase-space direction, resulting in more than 30k optimized parameters. When combining
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• good performance even though no 
channel-specific training 

• trained for n jets, used for n+1 jets 
→ performance like VEGAS  
→ cheap training  

• further improvements for VEGAS 
trained on top of MadNIS-Lite
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Figure 6: Mappings learned by the bilinear spline flow for W+3 jets. Left panel:
Learned mapping for the time-like invariant for massless propagators, conditional
on the partonic CM energy

p
ŝ. Right panel: Learned mapping for the t-invariant in

2! 2 scatterings, conditional on the scattering CM energy
p

p2.

our trained mapping with VEGAS, we achieve the best performance in the W+3 jets scenario,
with an improvement factor of up to 1.5. For the t̄t+ 2 jets scenario in the upper right plot,
the story is the same.

Next, we consider the same processes but with an additional jet in the final state. The re-
sults for different scenarios are shown in the lower two plots in Fig. 5. Again, we consider the
mapping that has been trained on the W+3 jets process and evaluate it on the W+4 jets process
without further training. We find that the pre-trained mappings are very close in performance
to the VEGAS benchmark, without any specific optimization on the W + 4 jets process. Like
before, when additionally combining with VEGAS we outperform our untrained phase-space
mappings. If we directly train our mappings on W + 4 jets, we immediately outperform our
untrained benchmark mappings even without further optimizing with VEGAS. When combin-
ing the trained mappings with an additional VEGAS optimization, we achieve an improvement
factor of up to 2 for the W+ 4 jets process.

Again, when turning to the t̄t+ 3 jets scenario, we observe the same behavior. This indi-
cates that our trainable mappings work well and are capable of generalizing from one process
to another process with an additional final state jet. This means our trainable bilinear flow
represents the smallest foundation model possible. We note that going even one step further
by pre-training our bilinear flows on W+2 jets and t̄t+1 jets, respectively, does not generalize
well to higher multiplicities as these low-multiplicity processes are too simple to encode all
the necessary information.

Explainability

Another benefit of using our bilinear-flow-enhanced mappings is the possibility to understand
and interpret the learned correlations. As an example, we consider the learned transformation
for the W+3 jets process in Fig. 6. Both plots show a learned transformation of an input of one
of the phase-space blocks conditioned on some physical features relevant to that component.
In the left panel of Fig. 6, we consider the learned transformation for a massless propagator
conditional on the partonic CM energy

p
ŝ. We can see that the overall shape of the mapping

deviates from the flat mapping, being slightly bulged upwards. This means that our fixed
choice of ⌫= 1.4 was slightly too large, indicating stronger pole cancellations in the collinear
limit. Further, the mapping tends to avoid zs < 0.2 and hence avoiding to sample the smin
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Massless propagator 
s-invariant

2→2 scattering 
t-invariant

• s-invariant: small energy-dependence, easily learned by VEGAS, 
still room for improvement in underlying mapping 

• t-invariant: large dependence on p2
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• MadNIS training: only small benefits from differentiable ME 
→ additional computational cost of gradients not amortized 

• MadNIS-Lite: middle ground between VEGAS and MadNIS 
→ generalizes from n jets to n+1 jets 
→ interpretability to improve phase space mappings 

• Many other applications of gradients, e.g. SBI, tuning, … 
→ make gradients easily available in future MadGraph versions

→ ∂ /∂x7


