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Anomaly Detection
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Anomaly Detection
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Weak Supervision

Classifier

SignalBackground

“Classification without labels: Learning from mixed samples in high energy physics” [1709.02949], E. Metodiev, B. Nachman, 
J. Thaler

• Optimal classifier 

𝑅optimal 𝑥 =
𝑝𝑆 𝑥

𝑝𝐵 𝑥

• For mixed datasets with signal fractions 𝑓𝑖

𝑅mixed 𝑥 =
𝑓1𝑅optimal 𝑥 + 1 − 𝑓1

𝑓2𝑅optimal 𝑥 + 1 − 𝑓2

→Monotonically increasing function of 

𝑅optimal 𝑥 as long as 𝑓1 > 𝑓2

→Same decision boundaries

https://arxiv.org/abs/1708.02949
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Application to resonance searches

Recreated from [2109.00546]

SR
Data

Background
Template

Classifier

https://arxiv.org/abs/2109.00546
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Application to resonance searches

Recreated from [2109.00546]

1. Idealized Anomaly Detector: SR 
background

2. CWoLa Hunting: SB data

3. CATHODE:
a. Train DE on SB data to learn 𝑝bkg(𝑥|𝑚)

b. Sample into SR 

https://arxiv.org/abs/2109.00546
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LHCO R&D dataset

• Benchmark dataset for anomaly detection

• QCD dijet background (1M events)

• Signal (0 or 1000 events)

• Use 9 windows with centers at 
𝑚𝐽𝐽,𝑛 = 3.5 TeV + 5 − 𝑛 ⋅ 0.1 TeV

“The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics” [2101.08320], G. 
Kasieczka, B. Nachman, D. Shih et. al. 

file:///“The%20LHC%20Olympics%202020/%20A%20Community%20Challenge%20for%20Anomaly%20Detection%20in%20High%20Energy%20Physics”%20%5B2101.08320%5D,%20G.%20Kasieczka,%20B.%20Nachman,%20D.%20Shih%20et.%20al.
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Without signal

Idealized Anomaly Detector
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Without signal

Idealized Anomaly Detector

𝑁exp = 𝜖𝐵𝑁𝑆𝑅
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Without signal

Idealized Anomaly Detector
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Without signal With signal

Idealized Anomaly Detector
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𝒮 =
𝑁obs − 𝑁exp

𝑁exp
2 𝑁exp

−1 + 𝜎exp
2

• 𝜖𝐵  Working point (determined on samples)

• 𝑁obs(𝜖𝐵) Observed number of events 

• 𝑁exp(𝜖𝐵) Expected number of events (background-only assumption) 

• 𝜎exp(𝜖𝐵) Relative error on expectation (from determination of working point)

Calculating the Significance
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𝑁exp
2 𝑁exp

−1 + 𝜎exp
2

• 𝜖𝐵  Working point (determined on samples)

• 𝑁obs(𝜖𝐵) Observed number of events 

• 𝑁exp(𝜖𝐵) Expected number of events (background-only assumption) 

• 𝜎exp(𝜖𝐵) Relative error on expectation (from determination of working point)

Calculating the Significance
“Asymptotic formulae for likelihood-based tests of new physics” [1007.1727], G. Cowan, K. Cranmer, E. Gross, and O. Vitells

𝒮 = 2 𝑁obs ln
𝑁obs 𝑁exp

−1 + 𝜎exp
2

1 + 𝑁obs𝜎exp
2 −

1

𝜎exp
2 ln

1 + 𝑁obs𝜎exp
2

1 + 𝑁exp𝜎exp
2

1/2

https://arxiv.org/abs/1708.02949
http://arxiv.org/abs/1007.1727
https://arxiv.org/abs/1708.02949
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Without signal With signal

Idealized Anomaly Detector
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Without signal With signal

CWoLa Hunting
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Without signal With signal

CWoLa

Need to account for systematic shift of data in 𝑁exp
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Systematic shift

Define a relative systematic shift per window 𝑛

𝛿sys, 𝑛 =
𝑁obs,n − 𝜖𝐵𝑁SR,n

𝜖𝐵𝑁SR,n

and its average over all windows 𝛿sys.
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Define a relative systematic shift per window 𝑛
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and its average over all windows 𝛿sys.

IAD CWoLa & CATHODE

𝑁exp 𝜖𝐵𝑁SR 𝜖𝐵𝑁SR 1 + 𝛿sys

𝜎exp 𝜎𝜖𝐵
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Systematic shift
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Data: LHCO R&D (Pythia)
MC: LHCO BB2 (Herwig)



8/11/2024 Resonant Searches as Cut and Count Experiments – Marie Hein 21

Systematic shift for CATHODE

• For CATHODE, large deviation of MC value 
from data value visible
➢Estimates interpolation error

• 𝛿sys from SB fits other part of the spectrum

➢Estimates difficulty of DE on tails

• Quadratic addition of both error sources
➢Fits whole spectrum
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Data-driven determination of 𝛿sys

Normal CATHODE procedure:

• Train DE on SB

• Sample DE in SR

• Train SR samples vs SR data classifier

Determine 𝛿sys by

• Train DE on SB

• Sample DE in SB

• Train SB samples vs SB data classifier
Recreated from [2109.00546]

https://arxiv.org/abs/2109.00546
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CWoLa Hunting CATHODE

Background-only test
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CWoLa Hunting CATHODE

Adding signal
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Breaking the Assumptions: CWoLa

Add a feature correlated with 𝑚𝐽𝐽 : 

Δ𝑅 = (𝜙𝐽1−𝜙𝐽2)2 + (𝜂𝐽1−𝜂𝐽2)2 
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• Alternative approach to bump hunts with direct 

background estimation instead of fits

• Robust 

• No false discoveries observed 

• Even when method assumptions are violated

• Simple

• Statistical procedure

• Systematic bias evaluation

• Powerful

• Significant deviations observed

Conclusion

Accurate and robust methods 
for direct background estimation 
in resonant anomaly detection

R. Das, T. Finke, MH, G. Kasieczka, M. 
Krämer, A. Mück, D. Shih

https://arxiv.org/abs/2411.00085
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Backup
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CATHODE with signal

• Determination of 𝛿sys on SB is affected by the 
presence of signal
→Obtain larger 𝛿sys with signal than without

→Dampening of significances

• To mitigate this we use the whole sideband 
with the statistics present in the SR 
→Dilution of signal
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CATHODE with Δ𝑅
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Without Signal With Signal

IAD Significances
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CWoLa CATHODE

𝛿sys for different window numbers
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