Research Training Group Physics of the Heaviest Particles at the LHC



**Collaborative Research Center TRR 257** 



Particle Physics Phenomenology after the Higgs Discovery





2411.00085

# Resonant Searches as Cut and Count Experiments

#### Marie Hein

with Ranit Das, Thorben Finke, Gregor Kasieczka, Michael Krämer, Alexander Mück and David Shih

ML4Jets 2024

#### Anomaly Detection



**RWITHAACHEN** UNIVERSITY



#### Anomaly Detection







### Weak Supervision



"Classification without labels: Learning from mixed samples in high energy physics" [1709.02949], E. Metodiev, B. Nachman, J. Thaler

• Optimal classifier

$$R_{\text{optimal}}(x) = \frac{p_S(x)}{p_B(x)}$$

- For mixed datasets with signal fractions  $f_i$   $R_{\text{mixed}}(x) = \frac{f_1 R_{\text{optimal}}(x) + (1 - f_1)}{f_2 R_{\text{optimal}}(x) + (1 - f_2)}$ 
  - →Monotonically increasing function of  $R_{\text{optimal}}(x)$  as long as  $f_1 > f_2$

 $\rightarrow$ Same decision boundaries



## Application to resonance searches







Recreated from [2109.00546]

## Application to resonance searches



**RNITHAACHEN** UNIVERSITY



Recreated from [2109.00546]

- 1. Idealized Anomaly Detector: SR background
- 2. CWoLa Hunting: SB data
- 3. CATHODE:
  - a. Train DE on SB data to learn  $p_{bkg}(x|m)$
  - b. Sample into SR

## LHCO R&D dataset



"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background (1M events)
- Signal (0 or 1000 events)



• Use 9 windows with centers at  $m_{JJ,n} = 3.5 \text{ TeV} + (5 - n) \cdot 0.1 \text{ TeV}$ 







#### Without signal





**RNTHAACHEN** UNIVERSITY

Without signal





![](_page_9_Picture_1.jpeg)

![](_page_9_Picture_2.jpeg)

#### Without signal

![](_page_9_Figure_4.jpeg)

![](_page_10_Picture_1.jpeg)

**RNITHAACHEN** UNIVERSITY

#### Without signal

![](_page_10_Figure_4.jpeg)

![](_page_10_Figure_6.jpeg)

## Calculating the Significance

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

$$S = \frac{N_{\rm obs} - N_{\rm exp}}{\sqrt{N_{\rm exp}^2 \left(N_{\rm exp}^{-1} + \sigma_{\rm exp}^2\right)}}$$

- $\epsilon_B$  Working point (determined on samples)
- $N_{obs}(\epsilon_B)$  Observed number of events
- $N_{\exp}(\epsilon_B)$  Expected number of events (background-only assumption)
- $\sigma_{\exp}(\epsilon_B)$  Relative error on expectation (from determination of working point)

## Calculating the Significance

![](_page_12_Picture_1.jpeg)

"Asymptotic formulae for likelihood-based tests of new physics" [1007.1727], G. Cowan, K. Cranmer, E. Gross, and O. Vitells

$$\mathcal{S} = \left[ 2 \left( N_{\text{obs}} \ln \frac{N_{\text{obs}} \left( N_{\text{exp}}^{-1} + \sigma_{\text{exp}}^2 \right)}{1 + N_{\text{obs}} \sigma_{\text{exp}}^2} - \frac{1}{\sigma_{\text{exp}}^2} \ln \frac{1 + N_{\text{obs}} \sigma_{\text{exp}}^2}{1 + N_{\text{exp}} \sigma_{\text{exp}}^2} \right) \right]^{1/2}$$

- $\epsilon_B$  Working point (determined on samples)
- $N_{obs}(\epsilon_B)$  Observed number of events
- $N_{\exp}(\epsilon_B)$  Expected number of events (background-only assumption)
- $\sigma_{\exp}(\epsilon_B)$  Relative error on expectation (from determination of working point)

![](_page_13_Picture_1.jpeg)

**RVNTHAACHEN** UNIVERSITY

#### Without signal

![](_page_13_Figure_4.jpeg)

## CWoLa Hunting

![](_page_14_Picture_1.jpeg)

**RWITHAACHEN** UNIVERSITY

#### Without signal

![](_page_14_Figure_4.jpeg)

![](_page_14_Figure_6.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

Without signal

![](_page_15_Figure_5.jpeg)

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

$$\delta_{\text{sys, }n} = \frac{N_{\text{obs,n}} - \epsilon_B N_{\text{SR,n}}}{\epsilon_B N_{\text{SR,n}}}$$

and its average over all windows  $\delta_{\rm sys}$ .

![](_page_17_Picture_1.jpeg)

![](_page_17_Picture_2.jpeg)

$$\delta_{\text{sys, }n} = \frac{N_{\text{obs,n}} - \epsilon_B N_{\text{SR,n}}}{\epsilon_B N_{\text{SR,n}}}$$

and its average over all windows  $\delta_{
m sys}$ .

|                   | IAD                    | CWoLa & CATHODE                                              |
|-------------------|------------------------|--------------------------------------------------------------|
| N <sub>exp</sub>  | $\epsilon_B N_{ m SR}$ | $\epsilon_B N_{\rm SR} (1 + \delta_{\rm sys})$               |
| $\sigma_{ m exp}$ | $\sigma_{\epsilon_B}$  | $\sqrt{\sigma_{\epsilon_B}^2 + \sigma_{\delta_{\rm sys}}^2}$ |

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

$$\delta_{\text{sys, }n} = \frac{N_{\text{obs,n}} - \epsilon_B N_{\text{SR,n}}}{\epsilon_B N_{\text{SR,n}}}$$

and its average over all windows  $\delta_{\rm sys}$ .

|                   | IAD                    | CWoLa & CATHODE                                              |
|-------------------|------------------------|--------------------------------------------------------------|
| N <sub>exp</sub>  | $\epsilon_B N_{ m SR}$ | $\epsilon_B N_{\rm SR} (1 + \delta_{\rm sys})$               |
| $\sigma_{ m exp}$ | $\sigma_{\epsilon_B}$  | $\sqrt{\sigma_{\epsilon_B}^2 + \sigma_{\delta_{\rm sys}}^2}$ |

![](_page_18_Figure_7.jpeg)

![](_page_19_Picture_1.jpeg)

$$\delta_{\text{sys, }n} = \frac{N_{\text{obs,n}} - \epsilon_B N_{\text{SR,n}}}{\epsilon_B N_{\text{SR,n}}}$$

and its average over all windows  $\delta_{
m sys}$ .

|                   | IAD                    | CWoLa & CATHODE                                              |
|-------------------|------------------------|--------------------------------------------------------------|
| N <sub>exp</sub>  | $\epsilon_B N_{ m SR}$ | $\epsilon_B N_{\rm SR} (1 + \delta_{\rm sys})$               |
| $\sigma_{ m exp}$ | $\sigma_{\epsilon_B}$  | $\sqrt{\sigma_{\epsilon_B}^2 + \sigma_{\delta_{\rm sys}}^2}$ |

![](_page_19_Figure_7.jpeg)

#### Systematic shift for CATHODE

• For CATHODE, large deviation of MC value from data value visible

![](_page_20_Figure_4.jpeg)

![](_page_20_Picture_5.jpeg)

![](_page_20_Picture_6.jpeg)

## Data-driven determination of $\delta_{\rm sys}$

![](_page_21_Picture_1.jpeg)

UNIVERSITY

![](_page_21_Figure_3.jpeg)

Recreated from [2109.00546]

## Data-driven determination of $\delta_{sys}$

![](_page_22_Picture_1.jpeg)

**RNTHAACHEN** UNIVERSITY

![](_page_22_Figure_3.jpeg)

Recreated from [2109.00546]

Normal CATHODE procedure:

- Train DE on SB
- Sample DE in SR
- Train SR samples vs SR data classifier

## Data-driven determination of $\delta_{sys}$

![](_page_23_Picture_1.jpeg)

UNIVERSITY

![](_page_23_Figure_3.jpeg)

Recreated from [2109.00546]

Normal CATHODE procedure:

- Train DE on SB
- Sample DE in SR
- Train SR samples vs SR data classifier

Determine  $\delta_{sys}$  by

- Train DE on SB
- Sample DE in SB
- Train SB samples vs SB data classifier

#### Systematic shift for CATHODE

- For CATHODE, large deviation of MC value from data value visible
- +  $\delta_{
  m sys}$  from SB fits other part of the spectrum

![](_page_24_Figure_5.jpeg)

![](_page_24_Picture_6.jpeg)

RNITHAA

## Systematic shift for CATHODE

• For CATHODE, large deviation of MC value from data value visible

Estimates interpolation error

δ<sub>sys</sub> from SB fits other part of the spectrum
 ➢ Estimates difficulty of DE on tails

![](_page_25_Figure_6.jpeg)

![](_page_25_Picture_7.jpeg)

RNTHAA

#### 8/11/2024

## Systematic shift for CATHODE

• For CATHODE, large deviation of MC value from data value visible

➢ Estimates interpolation error

- δ<sub>sys</sub> from SB fits other part of the spectrum
   ➢ Estimates difficulty of DE on tails
- Quadratic addition of both error sources
   Fits whole spectrum

![](_page_26_Figure_7.jpeg)

![](_page_26_Picture_8.jpeg)

RWITHAAQ

## Background-only test

![](_page_27_Figure_1.jpeg)

**RWITHAACHEN** UNIVERSITY

#### **CWoLa Hunting**

![](_page_27_Figure_4.jpeg)

CATHODE

## Adding signal

![](_page_28_Picture_1.jpeg)

UNIVERSITY

#### **CWoLa Hunting**

![](_page_28_Figure_4.jpeg)

**CATHODE** 

8/11/2024

## Breaking the Assumptions: CWoLa

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

Add a feature correlated with  $m_{II}$ :

$$\Delta R = \sqrt{(\phi_{J1} - \phi_{J2})^2 + (\eta_{J1} - \eta_{J2})^2}$$

![](_page_29_Figure_5.jpeg)

8/11/2024

## Breaking the Assumptions: CWoLa

![](_page_30_Picture_1.jpeg)

![](_page_30_Figure_2.jpeg)

Add a feature correlated with  $m_{II}$ :

$$\Delta R = \sqrt{(\phi_{J1} - \phi_{J2})^2 + (\eta_{J1} - \eta_{J2})^2}$$

![](_page_30_Figure_5.jpeg)

RNTHAAC

## Conclusion

![](_page_31_Picture_1.jpeg)

**RINTHAACHEN** UNIVERSITY

- Alternative approach to bump hunts with direct background estimation instead of fits
  - Robust
    - No false discoveries observed
    - Even when method assumptions are violated
  - Simple
    - Statistical procedure
    - Systematic bias evaluation
  - Powerful
    - Significant deviations observed

Accurate and robust methods for direct background estimation in resonant anomaly detection

R. Das, T. Finke, **MH**, G. Kasieczka, M. Krämer, A. Mück, D. Shih

![](_page_31_Picture_14.jpeg)

![](_page_32_Picture_0.jpeg)

Institute for Theoretical Particle Physics and Cosmology

## Backup

8/11/2024

## CATHODE with signal

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

- Determination of  $\delta_{\rm sys}$  on SB is affected by the presence of signal

ightarrowObtain larger  $\delta_{
m sys}$  with signal than without

 $\rightarrow$ Dampening of significances

 To mitigate this we use the whole sideband with the statistics present in the SR
 →Dilution of signal

![](_page_33_Figure_7.jpeg)

#### CATHODE with $\Delta R$

![](_page_34_Picture_1.jpeg)

**RVNTHAACHEN** UNIVERSITY

![](_page_34_Figure_3.jpeg)

## IAD Significances

![](_page_35_Figure_1.jpeg)

![](_page_35_Picture_2.jpeg)

#### Without Signal

![](_page_35_Figure_4.jpeg)

## $\delta_{\rm sys}$ for different window numbers

![](_page_36_Picture_1.jpeg)

**RNTHAACHEN** UNIVERSITY

#### CWoLa

![](_page_36_Figure_4.jpeg)

**CATHODE**