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incredible progress in recent 
years… 

๏more informative observables for 
both specific and general inference 
tasks


๏ huge growth in constraining power 
of observed data
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why do we need 
summaries / embeddings / “physics objects”? 

tractability: ~millions of detector channels to read out 
per LHC bunch crossing.


correctness: we don’t have a simulator that 
adequately describes all details of the data!

7



indeed, this is perhaps the main 
“point” of constructing jets: 

→
8



indeed, this is perhaps the main 
“point” of constructing jets: 

๏we cannot correctly predict the 
details of QCD with arbitrary 
accuracy;


→
9

tough to predict



indeed, this is perhaps the main 
“point” of constructing jets: 

๏we cannot correctly predict the 
details of QCD with arbitrary 
accuracy;


๏we can predict the “large-scale 
structure” of the fragmentation of 
partons  jets.→
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even so, useful details enable better inference. 

๏we can often measure the density over some 
informative features better than we can predict it.


๏ a calibration region may be used to measure said 
density and the simulation corrected based on this 
measurement.


๏ this is inherently a mis-specification problem, and 
one we’re trying to learn how to solve generally!
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we have a recipe for reweighting a density  (e.g. sim) to  (e.g. data): 

๏  for a data vs. simulation discriminator, .


p( ⃗x) q( ⃗x)

w(x) ≈ exp Dq
p( ⃗x) Dq

p( ⃗x)

T : ⃗x → ⃗x ⟹ T#p ≈ q

⃗x p q T

̂T p q
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we have a recipe for reweighting a density  (e.g. sim) to  (e.g. data): 

๏  for a data vs. simulation discriminator, .


it is often preferable to move events: 




๏ for “reasonably behaved” , , and , at least one  exists.


๏ usually want to change the simulation as little as possible:


✦ i.e. find the  that minimally (or “optimally”) morphs  into ;


✦ this is an optimal transport (OT) problem.

p( ⃗x) q( ⃗x)

w(x) ≈ exp Dq
p( ⃗x) Dq

p( ⃗x)

T : ⃗x → ⃗x ⟹ T#p ≈ q

⃗x p q T

̂T p q
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we have been implicitly using OT for decades in HEP: 

๏ correct a gaussian density  alter  of simulated distribution.
↔ μ, σ

̂T ⃗x ≡ ⃗∇ ϕ( ⃗x)
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we have been implicitly using OT for decades in HEP: 

๏ correct a gaussian density  alter  of simulated distribution.


neural OT generalizes this process. 

๏ for euclidean spaces, the OT map is the gradient of some convex potential:


.

↔ μ, σ

̂T ⃗x ≡ ⃗∇ ϕ( ⃗x)
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we have been implicitly using OT for decades in HEP: 

๏ correct a gaussian density  alter  of simulated distribution.


neural OT generalizes this process. 

๏ for euclidean spaces, the OT map is the gradient of some convex potential:


.

↔ μ, σ

̂T ⃗x ≡ ⃗∇ ϕ( ⃗x)
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data

⃗x ⃗x′￼

simulation๏ partially-convex neural 
networks learn  and 
therefore :


✦ the OT map is conditional 
on .

ϕz
̂Tz

z



jet flavor-tagging is a classification problem: 

๏ATLAS’s classifiers emit the probability of a jet to 
contain a -hadron, -hadron, or neither ( ).


๏modern algorithms are transformer-based:


✦ charged-particle tracks as “point cloud” inputs.


✦ see Greta’s overview for more details


๏ historically, discriminant scores were calibrated in 
bins


b c pb, pc, pu

Db ≡ log
pb

fcpc + (1 − fc)pu
20

transformer

pc pbpu

tracks

https://indico.cern.ch/event/1386125/timetable/?view=standard#103-transforming-flavour-taggi


๏ transformer-based discriminators deliver incredible separating power


qi ≡ logit pi ⃗q
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๏ transformer-based discriminators deliver incredible separating power


✦ but some clear mismodeling in the simulation.


๏ until now, we had no direct calibration for the jet flavor probabilities.


✦ to do so, we defined , treated  as euclidean, and calibrated via OT.qi ≡ logit pi ⃗q
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results: light-flavor jets 

๏we obtain the full 3D OT maps in 
 space s.t. ,


✦ derived as a function of jet .


๏ here we show a 2D slice for 
 at fixed .

⃗q ̂T#psim ≈ pdata

pT

qb × qc qu × pT

notation:

•  : flav. class. scores


• 


• -dependent OT map

qi ≡ logit pi

p′￼sim( ⃗q, pT) ≡ psim( ⃗q |pT) pdata(pT)
̂T# ≡ pT



the technology works! 

๏ very good agreement after 
calibration, including for .


๏  was not a calibration 
target  full space of  
properly corrected.

Db

Db
→ pi
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notation:

•  : flav. class. scores


• 


• -dependent OT map

qi ≡ logit pi

p′￼sim( ⃗q, pT) ≡ psim( ⃗q |pT) pdata(pT)
̂T# ≡ pT
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๏ for -jets: , while the 
reverse is true for  and .


✦ the simulation overstates its 
classification power.


๏ yields a very fine-grained 
understanding of mismodeling!

b ̂T pb < pb
pc pu

notation:

•  : flav. class. scores


• 


• -dependent OT map

qi ≡ logit pi

p′￼sim( ⃗q, pT) ≡ psim( ⃗q |pT) pdata(pT)
̂T# ≡ pT
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conventional operating 
points are “automatically” 
corrected. 

๏ e.g. this one used for 
measuring the  
couplings.

H ↔ b, t

notation:

•  : flav. class. scores


• 


• -dependent OT map

qi ≡ logit pi

p′￼sim( ⃗q, pT) ≡ psim( ⃗q |pT) pdata(pT)
̂T# ≡ pT
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more general uses of flavor-
tagging become possible. 

๏ discriminator used to constrain 
 couplings calibrated 

“for free”.


๏ only because the full 3D density 
 agrees with data. 

H ↔ c

̂T# psim( ⃗q |pT)

notation:

•  : flav. class. scores


• 


• -dependent OT map

qi ≡ logit pi

p′￼sim( ⃗q, pT) ≡ psim( ⃗q |pT) pdata(pT)
̂T# ≡ pT



the future 

๏ here we’ve performed a first 3+1D continuous 
calibration via OT.


✦ details and further background reading [here].


๏ the technique is general: it enables high-
dimensional, transport-based calibrations.


๏ additional (informative) conditionals should result 
in more universal and precise calibrations,


✦ allowing richer summary statistics for better 
inference.


๏we look forward to seeing what others can do 
with this technology!
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-014/


thank you, 
and happy calibrating!


