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® huge growth in constraining power
of observed data
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why do we need
summaries / embeddings / “physics objects”?

tractability: ~millions of detector channels to read out
per LHC bunch crossing.

correctness: we don’t have a simulator that
adequately describes all details of the data!
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Indeed, this Is perhaps the main
“point” of constructing jets:

® we cannot correctly predict the
details of QCD with arbitrary
accuracy;

® we can predict the “large-scale
structure” of the fragmentation of

partons — jets.

“large-scale structure’:
calculable features
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even so, useful details enable better inference.

® we can often measure the density over some
iInformative features better than we can predict it.

@ a calibration region may be used to measure said
density and the simulation corrected based on this
measurement.

® this Is Inherently a mis-specification problem, and
one we’'re trying to learn how to solve generally!
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we have a recipe for reweighting a density p(x) (e.g. sim) to g(x) (e.g. data):

o w(Xx) ~ exp Dg()?) for a data vs. simulation discriminator, Dg(f).
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we have a recipe for reweighting a density p(x) (e.g. sim) to g(x) (e.g. data):
o w(Xx) ~ exp Dg()?) for a data vs. simulation discriminator, Dg(f).
It Is often preferable to move events:

T:x->x = Typ~q

® for “reasonably behaved” X, p, and ¢, at least one T exists.

® usually want to change the simulation as /ittle as possible:

4+ |.e. find the fthat minimally (or “optimally”) morphs p into g;

+ this is an optimal transport (OT) problem.
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we have been implicitly using OT for decades in HEP:

® correct a gaussian density <> alter u, o of simulated distribution.
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we have been implicitly using OT for decades in HEP:

® correct a gaussian density <> alter u, o of simulated distribution.

neural OT generalizes this process.

® for euclidean spaces, the OT map is the gradient of some convex potential:
TX= V¢(5€).

simulation data
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we have been implicitly using OT for decades in HEP:

® correct a gaussian density <> alter u, o of simulated distribution.

neural OT generalizes this process.
® for euclidean spaces, the OT map is the gradient of some convex potential:
Tx=VpQX).

@ partially-convex neural
networks learn ¢, and

simulation data

therefore YA’Z:

+ the OT map is conditional
on Z.
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jet flavor-tagging is a classification problem:

® ATLAS's classifiers emit the probability of a jet to Pu Pc Pp
contain a b-hadron, c-hadron, or neither (p,, p.., p,)-

® modern algorithms are transformer-based:

+ charged-particle tracks as “point cloud” inputs.

+ see (Greta’s overview for more details

® historically, discriminant scores were calibrated In
bins

Dy, tracks
fcpc T (1 _fc)pu

20
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https://indico.cern.ch/event/1386125/timetable/?view=standard#103-transforming-flavour-taggi

® transformer-based discriminators deliver incredible separating power
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® transformer-based discriminators deliver incredible separating power

+ but some clear mismodeling in the simulation.
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® transformer-based discriminators deliver incredible separating power
+ but some clear mismodeling in the simulation.

® until now, we had no direct calibration for the jet flavor probabilities.

+ to do so, we defined g; = logit p,, treated ¢ as euclidean, and calibrated via OT.
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results: light-flavor jets

@ we obtain the full 3D OT maps In
g space s.t. Tup.. X Piata

+ derived as a function of jet p.

® here we show a 2D slice for
q, X q. at fixed g, X pr.

ATLAS Preliminary
pr=64.0 GeV, logit p,=0.0, v's =13 TeV, 140 fb™"
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notation:

| ; o
102L Vs=13Tev, 140"  _____ T.0. iets -
- pr €20, 400] GeV # Peim |

» ¢g; = logitp, : flav. class. scores

y ps,im(é)apT) = psim(é) ‘pT)pdata(pT)
. T, = pr-dependent OT map

Normalised entries

the technology works!

® very good agreement after
calibration, including for D,

@ D, was not a calibration <

target — full space of p;
properly corrected.
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notation:
» ¢g; = logitp, : flav. class. scores

y ps,im(é)apT) = psim(g ‘pT)pdata(pT)
. T, = pr-dependent OT map

® for b-jets: pr < Py, While the
reverse Is true for p. and p,,.

+ the simulation overstates its
classification power.

@ yields a very fine-grained
understanding of mismodeling!
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notation:

O
oo

» ¢g; = logitp, : flav. class. scores

e ps,im(é)apT) = psim(é) ‘pT)pdata(pT)

L

e 1, = p;~dependent OT map

o
@,
2
O
=
D.Qf) 0.4 ATLAS Preliminary
i ¢ 0 DP'" 70% OP
conventional operating O el Ty P oS :
: 5 0.2 tat. + Syst. —
points are “automatically” & | B *
corrected. S 40 -
® e.g. this one used for £ b
measuring the H < b, t ¢ °°F i -
couplings. pr [GeV]
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notation:

» ¢g; = logitp, : flav. class. scores

e ps,im(é)apT) = psim(é) ‘pT)pdata(pT)

o I

= pr~dependent OT map

more general uses of flavor-
tagging become possible.

® discriminator used to constrain

H < ¢ couplings calibrated
“for free”.

® only because the full 3D density

I

P«.(q | pr) agrees with data.
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the future

® here we’ve performed a first 3+1D continuous
calibration via OT.

+ details and further background reading [here].

® the technique Is general: it enables high- /=

04

dimensional, transport-based calibrations.

® additional (informative) conditionals should result
IN more universal and precise calibrations,

D Gy S ey & - 7 7 > s 4

+ allowing richer summary statistics for better
Inference.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2024-014/
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thank you,
and happy calibrating!
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