a continuous calibration of + the ATLAS flavor-tagging classifiers via optimal transportation maps * - 🖌 <u>Chris Pollard</u>, Warwick for the ATLAS collaboration ---

incredible progress in recent years...

incredible progress in recent years...

• more informative observables for both specific and general inference tasks

incredible progress in recent years...

• more informative observables for both specific and general inference tasks

In the second of observed data

features

inference

 $p(\phi)$ or $\frac{L(\phi)}{1-2\phi}$

why do we need summaries / embeddings / "physics objects"?

why do we need summaries / embeddings / "physics objects"?

per LHC bunch crossing.

tractability: ~millions of detector channels to read out

why do we need summaries / embeddings / "physics objects"?

per LHC bunch crossing.

correctness: we don't have a simulator that adequately describes all details of the data!

tractability: ~millions of detector channels to read out

indeed, this is perhaps the main "point" of constructing jets:

indeed, this is perhaps the main "point" of constructing jets:

• we cannot correctly predict the details of QCD with arbitrary accuracy;

indeed, this is perhaps the main "point" of constructing jets:

- we cannot correctly predict the details of QCD with arbitrary accuracy;
- we can predict the "large-scale" structure" of the fragmentation of partons \rightarrow jets.

"large-scale structure": calculable features

even so, useful details enable better inference.

• we can often measure the density over some informative features better than we can predict it.

even so, useful details enable better inference.

- we can often measure the density over some
- a calibration region may be used to measure said measurement.

informative features better than we can predict it.

density and the simulation corrected based on this

even so, useful details enable better inference.

- we can often measure the density over some
- measurement.

informative features better than we can predict it.

• a calibration region may be used to measure said density and the simulation corrected based on this

• this is inherently a *mis-specification* problem, and one we're trying to learn how to solve generally!

• $w(x) \approx \exp D_p^q(\vec{x})$ for a data vs. simulation discriminator, $D_p^q(\vec{x})$.

we have a recipe for reweighting a density $p(\vec{x})$ (e.g. sim) to $q(\vec{x})$ (e.g. data):

• $w(x) \approx \exp D_p^q(\vec{x})$ for a data vs. simulation discriminator, $D_p^q(\vec{x})$.

it is often preferable to move events:

we have a recipe for reweighting a density $p(\vec{x})$ (e.g. sim) to $q(\vec{x})$ (e.g. data):

we have a recipe for reweighting a density $p(\vec{x})$ (e.g. sim) to $q(\vec{x})$ (e.g. data): • $w(x) \approx \exp D_p^q(\vec{x})$ for a data vs. simulation discriminator, $D_p^q(\vec{x})$. it is often preferable to move events: $T: \vec{x} \to \vec{x}$

• for "reasonably behaved" \vec{x} , p, and q, at least one T exists.

• usually want to change the simulation as *little as possible*:

+ i.e. find the \hat{T} that minimally (or "optimally") morphs p into q;

this is an optimal transport (OT) problem.

$$\implies T_{\#}p \approx q$$

we have been implicitly using OT for decades in HEP:

• correct a gaussian density \leftrightarrow alter μ, σ of simulated distribution.

we have been implicitly using OT for decades in HEP:

• correct a gaussian density \leftrightarrow alter μ, σ of simulated distribution.

neural OT generalizes this process.

• for euclidean spaces, the OT map is the gradient of some convex potential:

we have been implicitly using OT for decades in HEP:

• correct a gaussian density \leftrightarrow alter μ, σ of simulated distribution.

neural OT generalizes this process.

In the other second second

- partially-convex neural networks learn ϕ_z and therefore \hat{T}_z :
 - the OT map is conditional on z.

jet flavor-tagging is a classification problem:

- ATLAS's classifiers emit the probability of a jet to contain a b-hadron, c-hadron, or neither (p_b, p_c, p_u) .
- Image: March Algorithms are transformer-based:
 - Charged-particle tracks as "point cloud" inputs.
 - see <u>Greta's overview</u> for more details
- In the interval of the inte bins

$$D_b \equiv \log \frac{p_b}{f_c p_c + (1 - 1)}$$

transformer

tracks

 $f_c)p_u$

In transformer-based discriminators deliver incredible separating power

In transformer-based discriminators deliver incredible separating power but some clear mismodeling in the simulation.

In transformer-based discriminators deliver incredible separating power

but some clear mismodeling in the simulation.

• until now, we had no direct calibration for the jet flavor probabilities.

- + to do so, we defined $q_i \equiv \operatorname{logit} p_i$, treated \vec{q} as euclidean, and calibrated via OT.

- $q_i \equiv \operatorname{logit} p_i$: flav. class. scores
- $p'_{\text{sim}}(\vec{q}, p_T) \equiv p_{\text{sim}}(\vec{q} \mid p_T) p_{\text{data}}(p_T)$
- $\hat{T}_{\#} \equiv p_T$ -dependent OT map

results: light-flavor jets

• we obtain the full 3D OT maps in \vec{q} space s.t. $\hat{T}_{\#}p_{\rm sim} \approx p_{\rm data}$,

+ derived as a function of jet p_T .

• here we show a 2D slice for $q_b \times q_c$ at fixed $q_u \times p_T$.

- $q_i \equiv \operatorname{logit} p_i$: flav. class. scores
- $p'_{\text{sim}}(\vec{q}, p_T) \equiv p_{\text{sim}}(\vec{q} \mid p_T) p_{\text{data}}(p_T)$
- $\hat{T}_{\#} \equiv p_T$ -dependent OT map

the technology works!

- very good agreement after calibration, including for D_b .
- D_b was not a calibration target \rightarrow full space of p_i properly corrected.

- $q_i \equiv \operatorname{logit} p_i$: flav. class. scores
- $p'_{\text{sim}}(\vec{q}, p_T) \equiv p_{\text{sim}}(\vec{q} \mid p_T) p_{\text{data}}(p_T)$ • $\hat{T}_{\#} \equiv p_T$ -dependent OT map
- for *b*-jets: $\hat{T}p_b < p_b$, while the reverse is true for p_c and p_u .
 - the simulation overstates its classification power.
- yields a very fine-grained understanding of mismodeling!

26

- $q_i \equiv \operatorname{logit} p_i$: flav. class. scores
- $p'_{\text{sim}}(\vec{q}, p_T) \equiv p_{\text{sim}}(\vec{q} \mid p_T) p_{\text{data}}(p_T)$
- $\hat{T}_{\#} \equiv p_T$ -dependent OT map

conventional operating points are "automatically" corrected.

• e.g. this one used for measuring the $H \leftrightarrow b, t$ couplings.

27

- $q_i \equiv \operatorname{logit} p_i$: flav. class. scores
- $p'_{\text{sim}}(\vec{q}, p_T) \equiv p_{\text{sim}}(\vec{q} \mid p_T) p_{\text{data}}(p_T)$
- $\hat{T}_{\#} \equiv p_T$ -dependent OT map

more general uses of flavortagging become possible.

- discriminator used to constrain
 H ↔ c couplings calibrated
 "for free".
- only because the full 3D density $\hat{T}_{\#} p_{sim}(\vec{q} | p_T)$ agrees with data.

28

the future

- Image here we've performed a first 3+1D continuous calibration via OT.
 - details and further background reading [here].
- the technique is general: it enables highdimensional, transport-based calibrations.
- additional (informative) conditionals should result in more *universal* and *precise* calibrations,
 - Allowing richer summary statistics for better inference.
- we look forward to seeing what others can do with this technology!

thank you, /////////and happy calibrating!

*