JET TAGGING WITH LORENTZ-EQUIVARIANT GEOMETRIC ALGEBRA TRANSFORMERS

Víctor Bresó Pla

In collaboration with Jonas Spinner, Johann Brehmer, Pim de Haan, Tilman Plehn, Huilin Qu & Jesse Thaler

arXiv:2405.14806 [physics.data-an] arXiv:2411.00104 [hep-ph, hep-ex]

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

HISTORY OF TOP TAGGING

A. Bogatskiy et al., 2211.00454S. Gong et al., 2201,08187D. Ruhe et al., 2305.11141

HISTORY OF TOP TAGGING

What are equivariant neural networks?

 ${\cal G}$

G

 $\mathcal{G}(\mathcal{N}(x)) = \mathcal{N}(\mathcal{G}(x))$

Why equivariance?

- **Symmetries** are important
- Symmetries are hard to learn

What are equivariant neural networks?

 $\mathcal{G}(\mathcal{N}(x)) = \mathcal{N}(\mathcal{G}(x))$

Why equivariance?

- Symmetries are important
- **Symmetries** are hard to learn
- More efficient networks

What are equival

 $\mathcal{G}(\mathcal{N}(x)) = \mathcal{N}(\mathcal{G}(x))$

Why equivariance

- Symmetries ar
- Symmetries ar
- More efficient

What is our recipe?

- Geometric Algebra
- Transformer

Symmetry group operation $\mathcal G$

What is a **geometric algebra**?

What is a **geometric algebra**?

Vector space 🕂 Geometric product

What is a **geometric algebra**?

Vector space 🕂 Geometric product

We work with the spacetime algebra, built from the Minkowski vector space

What is a **geometric algebra**?

Vector space 🕂 Geometric product

- We work with the spacetime algebra, built from the Minkowski vector space
- **How do we build it?** We start with real vectors γ^{μ} with the property

$$\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}$$

What is a **geometric algebra**?

Vector space 🕂 Geometric product

- We work with the spacetime algebra, built from the Minkowski vector space
- **How do we build it?** We start with real vectors γ^{μ} with the property

$$\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}\longrightarrow \text{ Same properties as the gamma matrices!!}$$

How do we build it? We start with real vectors γ^{μ} with the property

$$\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}\longrightarrow \underset{\text{matrices}!!}{\text{Same properties as the gamma}}$$

How do we build it? We start with real vectors γ^{μ} with the property

$$\{\gamma^{\mu},\gamma^{\nu}\}=2g^{\mu\nu}\longrightarrow \underset{\text{matrices}!!}{\text{Same properties as the gamma}}$$

Lorentz transformations

Lorentz transformations

Each grade transforms
separately

Lorentz transformations

Each grade transforms
separately

- Equivariant maps can never mix grade components

 \triangleright

- Each grade transforms separately - Equivariant maps can never mix grade components - Easy to build equivariant versions of ordinary networks

- Each grade transforms separately - Equivariant maps can never mix grade components - Easy to build equivariant versions of ordinary networks

- Equivariance + Transformer = L-GATr

Credits to Johann Brehmer

Key feature: Symmetry breaking

Key feature: Symmetry breaking

Key feature: Symmetry breaking

-Beam reference: $(1, 0, 0, \pm 1)$

 $SO(1,3) \rightarrow \text{boosts} + \text{rotations}$ around the beam

Key feature: Symmetry breaking

-Beam reference: $(1, 0, 0, \pm 1)$ $SO(1, 3) \rightarrow \text{boosts} + \text{rotations around the beam}$ -Time reference: (1, 0, 0, 0) $SO(1, 3) \rightarrow SO(3)$

Key feature: Symmetry breaking

Beam direction

-Beam reference: $(1, 0, 0, \pm 1)$ $SO(1, 3) \rightarrow \text{boosts} + \text{rotations around the beam}$ -Time reference: (1, 0, 0, 0) $SO(1, 2) \rightarrow SO(2)$

 $SO(1,3) \rightarrow SO(3)$

Beam	Time	Embedding	$1/\epsilon_B \ (\epsilon_S = 0.3)$
_	X	Particle	1422
Spacelike	×	Particle	1905
All planes	\checkmark	Particle	2009
_	\checkmark	Token	1923
xy plane	\checkmark	Channel	2060
Spacelike	\checkmark	Particle	2152
$\operatorname{Lightlike}$	\checkmark	Particle	2114
xy plane	\checkmark	Particle	2240

Experiment: **Top tagging**

Network	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.5)$	$1/\epsilon_B \ (\epsilon_S = 0.3)$
TopoDNN [52]	0.916	0.972	_	295 ± 5
LoLa [9]	0.929	0.980	_	722 ± 17
N-subjettiness [53]	0.929	0.981	_	867 ± 15
PFN [54]	0.932	0.9819	247 ± 3	888 ± 17
TreeNiN [55]	0.933	0.982	_	1025 ± 11
ParticleNet [56]	0.940	0.9858	397 ± 7	1615 ± 93
ParT [57]	0.940	0.9858	413 ± 16	1602 ± 81
MIParT [58]	0.942	0.9868	505 ± 8	2010 ± 97
LorentzNet* [10]	0.942	0.9868	498 ± 18	2195 ± 173
CGENN* [12]	0.942	0.9869	500	2172
PELICAN* [40]	0.9426 ± 0.0002	0.9870 ± 0.0001	_	2250 ± 75
L-GATr* [33]	0.9423 ± 0.0002	0.9870 ± 0.0001	540 ± 20	2240 ± 70

Experiment: **Top tagging**

Network	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.5)$	$1/\epsilon_B \ (\epsilon_S = 0.3)$
TopoDNN [52]	0.916	0.972	_	295 ± 5
LoLa [9]	0.929	0.980	_	722 ± 17
N-subjettiness [53]	0.929	0.981	_	867 ± 15
PFN [54]	0.932	0.9819	247 ± 3	888 ± 17
TreeNiN [55]	0.933	0.982	_	1025 ± 11
ParticleNet [56]	0.940	0.9858	397 ± 7	1615 ± 93
ParT [57]	0.940	0.9858	413 ± 16	1602 ± 81
MIParT [58]	0.942	0.9868	505 ± 8	2010 ± 97
LorentzNet* [10]	0.942	0.9868	498 ± 18	2195 ± 173
CGENN* [12]	0.942	0.9869	500	2172
PELICAN* [40]	0.9426 ± 0.0002	$\textbf{0.9870} \pm 0.0001$	_	2250 ± 75
L-GATr* [33]	0.9423 ± 0.0002	0.9870 ± 0.0001	540 ± 20	2240 ± 70

- Experiment: JetClass tagging
 - Large and comprehensive jet dataset
 - 100M events
 - 10 classes

Experiment: JetClass tagging

- Large and comprehensive jet dataset
- 100M events
- 10 classes

	All cla Accuracy	isses AUC	$H \rightarrow b \bar{b}$ Rej _{50%}	$H \rightarrow c\bar{c}$ Rej _{50%}	$\begin{array}{c} H \rightarrow g g \\ \text{Rej}_{50\%} \end{array}$	$H \rightarrow 4q$ Rej _{50%}	$H \rightarrow l vq\bar{q}'$ Rej _{99%}	$t \rightarrow bq\bar{q}'$ Rej _{50%}	$t \rightarrow bl v$ Rej _{99.5%}	$W \rightarrow q\bar{q}'$ Rej _{50%}	$Z \rightarrow q\bar{q}$ Rej _{50%}
ParticleNet [56]	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT [57]	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
MIParT 58	0.861	0.9878	10753	4202	123	1927	5450	31250	16807	542	402
L-GATr	0.865	0.9884	12195	4819	128	2304	5764	37736	19231	580	427

- Large and comprehensive jet dataset
- 100M events
- 10 classes

	All cla Accuracy	isses AUC	$H \rightarrow b \bar{b}$ Rej _{50%}	$H \rightarrow c\bar{c}$ Rej _{50%}	$\begin{array}{c} H \rightarrow g g \\ \text{Rej}_{50\%} \end{array}$	$H \rightarrow 4q$ Rej _{50%}	$H \rightarrow l \nu q \bar{q}'$ Rej _{99%}	$t \rightarrow bq\bar{q}'$ Rej _{50%}	$t \rightarrow bl v$ Rej _{99.5%}	$W \rightarrow q\bar{q}'$ Rej _{50%}	$Z \rightarrow q\bar{q}$ Rej _{50%}
ParticleNet [56]	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
ParT [57]	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
MIParT [58]	0.861	0.9878	10753	4202	123	1927	5450	31250	16807	542	402
L-GATr	0.865	0.9884	12195	4819	128	2304	5764	37736	19231	580	427

Impact of pre-training

Impact of pre-training

H. Qu et al., 2202,03772

Impact of pre-training

H. Qu et al., 2202,03772

What if we combine pre-training and equivariance?

Network	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.5)$	$1/\epsilon_B \ (\epsilon_S = 0.3)$
LorentzNet* [10]	0.942	0.9868	498 ± 18	2195 ± 173
PELICAN* [42]	0.942 0.9426 ± 0.0002	0.9809 0.9870 ± 0.0001	-	2172 2250 ± 75
L-GATr* [35]	0.9423 ± 0.0002	0.9870 ± 0.0001	540 ± 20	2240 ± 70
ParticleNet-f.t. [60]	0.942	0.9866	487 ± 9	1771 ± 80
ParT-f.t. [60]	0.944	0.9877	691 ± 15	2766 ± 130
MIParT-f.t. [60]	0.944	0.9878	640 ± 10	2789 ± 133
L-GATr-f.t.* (new)	$\textbf{0.9442} \pm 0.0002$	0.98792 ± 0.00004	661 ± 24	3005 ± 186

What if we combine pre-training and equivariance?

Network	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.5)$	$1/\epsilon_B \ (\epsilon_S = 0.3)$
LorentzNet* [10] CGENN* [14] PELICAN* [42] L-GATr* [35]	$\begin{array}{c} 0.942 \\ 0.942 \\ 0.9426 \pm 0.0002 \\ 0.9423 \pm 0.0002 \end{array}$	$\begin{array}{l} 0.9868 \\ 0.9869 \\ 0.9870 \pm 0.0001 \\ 0.9870 \pm 0.0001 \end{array}$	498 ± 18 500 - 540 ± 20	$\begin{array}{r} 2195 \pm 173 \\ 2172 \\ 2250 \pm 75 \\ 2240 \pm 70 \end{array}$
ParticleNet-f.t. [60] ParT-f.t. [60] MIParT-f.t. [60] L-GATr-f.t.* (new)	0.942 0.944 0.944 0.9442 ± 0.0002	$\begin{array}{l} 0.9866 \\ 0.9877 \\ 0.9878 \\ 0.98792 \pm 0.00004 \end{array}$	487 ± 9 691 ± 15 640 ± 10 661 ± 24	$\begin{array}{rrrr} 1771 \pm & 80 \\ 2766 \pm 130 \\ 2789 \pm 133 \\ 3005 \pm 186 \end{array}$

What if we combine pre-training and equivariance?

Network	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.5)$	$1/\epsilon_B \ (\epsilon_S = 0.3)$
LorentzNet* [10]	0.942	0.9868	498 ± 18	2195 ± 173
CGENN* [14]	0.942	0.9869	500	2172
PELICAN* [42]	0.9426 ± 0.0002	0.9870 ± 0.0001	_	2250 ± 75
L-GATr* [35]	0.9423 ± 0.0002	0.9870 ± 0.0001	540 ± 20	2240 ± 70
ParticleNet-f.t. [60]	0.942	0.9866	487 ± 9	1771 ± 80
ParT-f.t. [60]	0.944	0.9877	691 ± 15	2766 ± 130
MIParT-f.t. [60]	0.944	0.9878	640 ± 10	2789 ± 133
L-GATr-f.t.* (new)	0.9442 ± 0.0002	0.98792 ± 0.00004	661 ± 24	3005 ± 186

CONCLUSIONS

L-GATr sets a new benchmark on multiple tagging tasks

L-GATr has a better scaling behavior than competing baselines

L-GATr has a strong performance on multiple problems, namely regression and generation

CONCLUSIONS

See talks by Jonas Spinner and Giovanni De Crescenzo!

Sneak peek at our other applications:

Johann Brehmer

CS paper

HEP paper

L-GATr code

Jonas Spinner

Pim de Haan

Tilman Plehn

Huilin Qu

Lorentz-Equivariant Geometric Algebra Transformer for High-Energy Physics

Jonas Spinner*, Victor Breso*, Pim de Haan, Tilman Plehn, Jesse Thaler, Johann Brehmer, NeurIPS 2024, arXiv:2405.14806

A Lorentz-Equivariant Transformer for all of the LHC

Johann Brehmer, Víctor Bresó, Pim de Haan, Tilman Plehn, Huilin Qu, Jonas Spinner, Jesse Thaler, arXiv:2411.00446

What will you use L-GATr for?