Denoising Graph **Super-Resolution for** Improved Collider **Event Reconstruction**

ML4Jets 06 November, 2024

https://arxiv.org/abs/2409.16052

Nilotpal Kakati, Etienne Dreyer, Eilam Gross

(nilotpal.kakati@cern.ch)

Last Monday,

Experimental highlights: Edge AI for real-time systems in HEP

Jennifer Ngadiuba (Fermilab)

ML4Jets 2024 LPNHE, Paris November 4-8, 2024

Example: High-granularity calorimeter @ HL-LHC

Weizmann Institute of Science

... What if we try to upscale calorimeters with AI?

(shameless self self-plugin from the audience): Ah we tried that exact thing, and will talk about it on Wednesday...

This is the talk!

N. Kakati

31

Why need (better) detectors?

Detector data

Reconstruction

Weizmann Institute of Science

Why need (better) detectors?

Detector data

Reconstruction

Weizmann Institute of Science

But, no free lunch...

Detector resolution

But, no free lunch...

Detector resolution

Reconstruction

Detector data

AI super resolution magic to the rescue??

AI super resolution magic to the rescue??

Weizmann Institute of Science

Let's get a bit technical...

Data Generation Setup

High Resolution (No noise)

Low Resolution (Sum up cells in η, ϕ)

Weizmann Institute of Science

COCOA mod (<u>https://iopscience.iop.org/article/</u> ◆ <u>10.1088/2632-2153/acf186/pdf</u>

Add noise

Low Resolution + noise

Weizmann Institute of Science

High Resolution

Low Resolution (Sum up cells)

Add noise

High Resolution + no noise

Low Resolution + noise

Weizmann Institute of Science

High Resolution

Low Resolution (Sum up cells)

Add noise

High Resolution + no noise

Weizmann Institute of Science

Inspired by the SR3 paper

Image Super-Resolution via Iterative Refinement (*https://arxiv.org/pdf/2104.07636.pdf*)

- Images \rightarrow Graph
- ♦ Diffusion → Flow Matching
- Fancier network architecture

Low Res Graph

Weizmann Institute of Science

Inspired by the SR3 paper

Image Super-Resolution via Iterative Refinement (*https://arxiv.org/pdf/2104.07636.pdf*)

- Images \rightarrow Graph
- ♦ Diffusion → Flow Matching
- Fancier network architecture

Low Res Graph

 $\mathcal{N}(0,I)$

Weizmann Institute of Science

Inspired by the SR3 paper

Image Super-Resolution via Iterative Refinement (*https://arxiv.org/pdf/2104.07636.pdf*)

- Images \rightarrow Graph
- ♦ Diffusion → Flow Matching
- Fancier network architecture

ML set up

 $\mathcal{N}(0,I)$

Weizmann Institute of Science

Inspired by the SR3 paper

Image Super-Resolution via Iterative Refinement (*https://arxiv.org/pdf/2104.07636.pdf*)

- Images \rightarrow Graph
- Diffusion \rightarrow Flow Matching
- Fancier network architecture

High Res Graph

(Baby) step 1: Single electron

Simplest case

Electron gun (one event = one electron)

• $2x \times 2x = 4x$ upscaling

Event display (graphs as images)

Weizmann Institute of Science

Event display (graphs as images)

Weizmann Institute of Science

CNF in action

Quantitatively

+	Event energy = electron energy	

♦	Shift in LR is because we were not
	storing negative energy cells.

Network manages to fix it

Substructure

Weizmann Institute of Science

A more interesting case - more particles, more upscaling...

A more Interesting case!

- Multiple particles \blacklozenge
 - Single electron with

→
$$p_T \in [20, 50]$$
 GeV

- $\eta \in [-2.5, 2.5] \phi \in [-\pi, \pi)$
- Closely accompanied by 0-3 photons with $p_T \in [5,25]$ GeV

- Train identical reconstruction algorithm with identical hyper parameters on + the low-res and high-res data, and look at reconstruction performance
 - Novel reconstruction algorithm (skipping, sorry!)
 - Predicts fractional association of each cell to particles (cross attention!)

 $4x \times 4x = 16x$ upscaling

LR (measured)

Weizmann Institute of Science

HR (predicted)

LR (measured)

Weizmann Institute of Science

- 18.5 GeV (16.4 GeV)
- 52.7 GeV (50.5 GeV)

''

LR (measured)

Weizmann Institute of Science

HR (predicted)

N. Kakati

'1

Quantitative improvement

- Improved p_T resolution +
 - Denoising

- Improved η , ϕ resolution ◆
 - Super resolution

Weizmann Institute of Science

N. Kakati

20

Super Resolution or Hallucination?

Where does the extra info come from?

Weizmann Institute of Science

Where does the extra info come from?

- From training data! (*Like any other ML algo*) +
 - Energy deposition, by let's say a photon, is not random
 - Model can learn the HR distribution conditioned on the LR distribution

- HR output = Educated estimation of the model based on the • patterns learned from the training data
 - Similar to how SR work in Computer vision

Ok, it can learn, but how do we know it is learning?

Weizmann Institute of Science

Ok, it <u>can</u> learn, but how do we know it <u>is</u> learning?

- Qn: The model can predict "realistic looking" outputs, but are + they correct?
- With simulation, •
 - Easy to check. we can have the truth targets
- With actual data, •
 - Not so easy. (How much we trust our simulations?)
 - Calibration problem (tricky, but should be doable)

Weizmann Institute of Science

HR (target) LR 2.0 sum = 15926 MeV 2.0 sum = 16022 MeV peak = 9482 MeV peak = 9837 MeV 1.8 1.8 1.6 1.6 1.4 1.4 0.0 0.2 0.0 0.2 -0.2 -0.2

But, most importantly,

- We shouldn't look at it in isolation
- Primary goal -
 - Improve reconstruction
 - Super resolution is just an auxiliary task

Wrapping up...

- Al super resolution magic can actually work! +
- Primary future extensions +
 - More particles (full event)
 - Including the hadronic calorimeter

- Can help current reconstructions ◆
- Specifically, can be helpful for future detector designs +
- arXiv preprint: <u>https://arxiv.org/abs/2409.16052</u> +

Weizmann Institute of Science

We can *"pretend"* to have a higher-resolution detector and the reconstruction performance reflects it.

Low Resolution + noise

High Resolution + no noise

Thanks!

Understanding η , ϕ residuals

Understanding η , ϕ **residuals**

Network predicts for each cell how much it's + associated to each particle

Understanding η , ϕ **residuals**

Network predicts for each cell how much it's + associated to each particle

$$\bullet \quad \text{particle } \eta = \sum_{i} w_i \cdot \text{cell}_i \eta$$

