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Last Monday,

… What if we try to upscale calorimeters with AI?

(shameless self self-plugin from the audience): Ah we 
tried that exact thing, and will talk about it on 
Wednesday…

This is the talk!

Jennifer’s talk

https://indico.cern.ch/event/1386125/contributions/6187201/attachments/2959837/5206338/ML4Jets25-ngadiuba.pdf
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Why need (better) detectors?

Reconstruction

Find the Higgs!

Look for your favorite particle
and maybe not find it :)

Measurements

. . .

Detector data Particles
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Detector resolution

Physics insight

But, no free lunch…
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Detector resolution

Physics insight

$$$ + technical challenges

But, no free lunch…
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Let’s ask

Reconstruction

Find the Higgs!

Look for your favorite particle
and not find it :)

Measurements

. . .

Detector data Particles

AI super resolution magic 

to the rescue??
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Find the Higgs!

Look for your favorite particle
and not find it :)
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. . .

Detector data Particles

AI super resolution magic 

to the rescue??



Let’s get a bit technical…
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Data Generation Setup

High Resolution 
(No noise)

1

Low Resolution 
(Sum up cells in )η, ϕ

2

Add noise

3

✦ COCOA mod (https://iopscience.iop.org/article/
10.1088/2632-2153/acf186/pdf)

https://iopscience.iop.org/article/10.1088/2632-2153/acf186/pdf
https://iopscience.iop.org/article/10.1088/2632-2153/acf186/pdf
https://iopscience.iop.org/article/10.1088/2632-2153/acf186/pdf
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ML Goal

High Resolution + no noiseLow Resolution + noise

13

ML
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ML Goal

High Resolution + no noiseLow Resolution + noise
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ML
Denoising

   Super Resolution+



9 N. KakatiWeizmann Institute of Science

ML set up
✦ Inspired by the SR3 paper
Image Super-Resolution via Iterative Refinement 
(https://arxiv.org/pdf/2104.07636.pdf)

✦ Images  Graph

✦ Diffusion  Flow Matching 
✦ Fancier network architecture

→
→

https://arxiv.org/pdf/2104.07636.pdf
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ML set up
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ML set up

Low Res Graph

𝒩(0,I)

Continuous Normalizing Flow

High Res Graph

Conditional input

✦ Inspired by the SR3 paper
Image Super-Resolution via Iterative Refinement 
(https://arxiv.org/pdf/2104.07636.pdf)

✦ Images  Graph

✦ Diffusion  Flow Matching 
✦ Fancier network architecture

→
→

https://arxiv.org/pdf/2104.07636.pdf


(Baby) step 1: Single electron
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Simplest case

✦ Electron gun (one event = one electron)

➡

➡      

✦  upscaling

pT ∈ [50, 51] GeV

η ∈ [−0.01, 0.01] ϕ ∈ [−π, π)

2x × 2x = 4x

HRLR
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Event display (graphs as images)
CNF in action
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Event display (graphs as images)
CNF in action
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Quantitatively

✦ Event energy = electron energy

✦ Shift in LR is because we were not 
storing negative energy cells.
➡ Network manages to fix it
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Substructure



A more interesting case - more particles, 
more upscaling…

HRLR
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A more Interesting case!

HRLR✦ Multiple particles
➡ Single electron with 

➡

➡      

➡ Closely accompanied by 0-3 photons with 

pT ∈ [20,50] GeV

η ∈ [−2.5,2.5] ϕ ∈ [−π, π)

pT ∈ [5,25] GeV  upscaling4x × 4x = 16x

✦ Train identical reconstruction algorithm with identical hyper parameters on 
the low-res and high-res data, and look at reconstruction performance
➡ Novel reconstruction algorithm (skipping, sorry!)
➡ Predicts fractional association of each cell to particles (cross attention!)
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Quantitative improvement

✦ Improved  resolution
➡ Denoising

✦ Improved  resolution
➡ Super resolution

pT

η, ϕ



Super Resolution or Hallucination?
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Where does the extra info come from?
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Where does the extra info come from?

✦ From training data! (Like any other ML algo)
➡ Energy deposition, by let’s say a photon, is not random
➡ Model can learn the HR distribution conditioned on the LR 

distribution

✦ HR output = Educated estimation of the model based on the 
patterns learned from the training data
➡ Similar to how SR work in Computer vision
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Ok, it can learn, but how do we know it is learning?
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Ok, it can learn, but how do we know it is learning?

✦ Qn: The model can predict “realistic looking” outputs, but are 
they correct?

✦ With simulation, 
➡ Easy to check. we can have the truth targets

✦ With actual data,
➡ Not so easy. (How much we trust our simulations?)
➡ Calibration problem (tricky, but should be doable)



✦ We shouldn’t look at it in isolation

✦ Primary goal -
➡ Improve reconstruction
➡ Super resolution is just an auxiliary task
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But, most importantly,



✦ AI super resolution magic can actually work!
➡ We can “pretend” to have a higher-resolution detector and the reconstruction performance reflects it.

✦ Primary future extensions
➡ More particles (full event)
➡ Including the hadronic calorimeter

✦ Can help current reconstructions

✦ Specifically, can be helpful for future detector designs

✦ arXiv preprint: https://arxiv.org/abs/2409.16052
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Wrapping up…

https://arxiv.org/abs/2409.16052


Thanks!



Backup
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Understanding  residualsη, ϕ



✦ Network predicts for each cell how much it’s 
associated to each particle
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✦ Network predicts for each cell how much it’s 
associated to each particle

✦
 particle η = ∑

i

wi ⋅ celli η
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Understanding  residualsη, ϕ


