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Air showers in gamma astronomy
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• Study of astrophysical sources using cosmic gamma rays

• Extensive air showers induced by cosmic particle

[1]: https://www.isdc.unige.ch/cta/images/outreach/CherenkovLight.jpg

• Detect Cherenkov pool with Imaging Atmospheric Cherenkov Telescopes (H.E.S.S., CTA, …)

• State-of-the-art cameras feature more than thousand pixels
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From the air shower to the IACT image
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• Detecting Cherenkov light with IACTs like CT5 from H.E.S.S.

• Cherenkov light reflected off mirrors onto telescope camera

• FlashCam: camera with 1758 PMTs (pixels) 

• IACT image: visualisation of the air shower
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• Simulation of IACT events includes the simulation of air showers (CORSIKA) and instrument 

response (sim_telarray)

• Especially simulation of background computationally expensive 

• Up to 10000 background cosmic rays for every gamma ray

• Air shower development much more complex for cosmic rays

→ Goal: speed up air shower simulation and keep simulation accuracy

• Investigate ML approach (Diffusion Model):

• Memory-efficient storing of model (TB large library within 100 MB)

• Generate showers with properties not settable in simulations (e.g. 𝑋!"#)

→ Proof of concept: application in astroparticle physics

Accelerating the simulation of air shower images
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Previous work on IACT image generation

• Successful generation of IACT gamma images using a conditional WGAN (our paper: arxiv:2311.01385)
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• However: significantly worse results for 
proton images

→ Use of state-of-the-art diffusion models 
known for their accurate generation 

https://arxiv.org/abs/2311.01385


Score-based diffusion model
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• Diffusion model: state-of-the-art 

generative model

• Corruption of the initial image 

through the addition of noise 

(data à noise)

• Addition of noise described by 

Stochastic Differential Equation

• Prediction of score function by      

the neural network

• Removal of noise through SDE and 

predicted score (noise à data)

[3]
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Training data and framework

Simulated data:

• Proton images, energy and impact 
point (CT5 mono simulations)

• Images contain 1764 pixels

• Training data ~ 350,000 samples

• Analysis of images using test data set 
with ~ 80000 samples
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Framework:
• Score-based diffusion model based on CaloScore

(arxiv:2308.03847)

• Size model: ResNet predicting size and impact 
coordinates from energy

• Pixel model: U-Net predicting image from energy, 
size, and impact coordinates
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Generation of IACT proton images

• Various air shower 

characteristics 

represented

• Circular signal

• Elliptical signal

• Truncated signal

• Hadronic 

substructure

→ Simulated and 

generated images 

visually similar
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Investigation of pixel parameters

• Investigation of 

low-level image 

parameters

• Distributions of 

simulated and 

generated data 

sets match well

• Slightly more 

pixels occupied in 

generated images
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→ Pixel parameters 

represented in 

generated images

• Minor improvements   

still needed

Work in 
progress



Event analysis using Hillas parameters

• Hillas parameters introduced for IACT image analysis

• Elliptical parameterisation of the Cherenkov light distribution on the camera

• Used for particle identification and event reconstruction

→ Utilized for quantifying shape of generated shower images
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• Size: integrated signal

• Length L: spread along 
major axis

• Width W: spread 
along minor axis

• Polar coordinate r of 
ellipsis center

• Radial coordinate 𝚽
of ellipsis center

• Rotation angle 𝚿 of 
ellipsis

Elliptical 
signal



Analysed Hillas parameters

→ Already good match of distributions, but improvements are still needed for most parameters
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Correlation of Hillas parameters

• Investigation of 

encoded physics

→ Study correlations 

of Hillas parameters

• Minor differences 

but overall similar

→ Diffusion model 

able to pick up 

complex parameter 

correlations
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Summary and Outlook

• Simulation of IACT events, especially cosmic rays, computationally expensive

• Investigate fast, accurate, and memory-efficient approach for event generation

• Training of a score-based diffusion model (H.E.S.S. CT5 FlashCam)

• Successful generation of realistic images (more than 1500 pixels)

• Analysis of Hillas parameters and their correlations

• Reproduction of distributions despite minor differences

• Speed-up of generation process still work in progress

→ Promising prospects for accelerating simulations in astroparticle physics with generative models
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Backup
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Additional information

• cWGAN-GP: Critic, generator, energy constrainer and 
impact constrainer

• Score-based diffusion model: size model and pixel model
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Training 
time

Number of 
A100 GPUs
for training

Generation 
time (100k 
images)

MC 
simulation - - ~ 70 h (1 CPU)

WGAN ~19 h 4 ~ 2 s (1 GPU)

Diffusion 
model ~18 h 8 ~ 33.5 h (1 

GPU)

→ Outlook: improving of speed and accuracy of DM and 
accuracy of WGAN 


