

Ultra-Fast Generation of Air Shower Images for Imaging Air Cherenkov Telescopes using a score-based diffusion model

ML4Jets Paris – 4 - 8 November 2024

Christian Elflein, Stefan Funk, Jonas Glombitza, Vinicius Mikuni, Benjamin Nachman, Lark Wang

Erlangen Centre for Astroparticle Physics, Erlangen, Germany Lawrence Berkeley National Laboratory, Berkeley, USA

Air showers in gamma astronomy

- Study of astrophysical sources using cosmic gamma rays
- Extensive air showers induced by cosmic particle

- Detect Cherenkov pool with Imaging Atmospheric Cherenkov Telescopes (H.E.S.S., CTA, ...)
- State-of-the-art cameras feature more than thousand pixels

From the air shower to the IACT image

- Detecting Cherenkov light with IACTs like **CT5** from H.E.S.S.
- Cherenkov light reflected off mirrors onto telescope camera
- FlashCam: camera with 1758 PMTs (pixels)
- IACT image: visualisation of the air shower

Cleaned pixels (removed due to IACT image night sky background) FlashCam Cherenkov signal (in photoelectrons)

christian.elflein@fau.de

Accelerating the simulation of air shower images

- Simulation of IACT events includes the simulation of air showers (CORSIKA) and instrument response (sim_telarray)
- Especially simulation of background computationally expensive
 - Up to 10000 background cosmic rays for every gamma ray
 - Air shower development much more complex for cosmic rays
- ightarrow Goal: speed up air shower simulation and keep simulation accuracy
- Investigate ML approach (Diffusion Model):
 - Memory-efficient storing of model (TB large library within 100 MB)
 - Generate showers with properties not settable in simulations (e.g. X_{max})
- → **Proof of concept**: application in astroparticle physics

Previous work on IACT image generation

Successful generation of IACT gamma images using a conditional WGAN (our paper: arxiv:2311.01385)

Score-based diffusion model

- Diffusion model: state-of-the-art generative model
- Corruption of the initial image through the addition of noise (data → noise)
- Addition of noise described by Stochastic Differential Equation
- Prediction of score function by the neural network
- Removal of noise through SDE and predicted score (noise → data)

Training data and framework

IACT

image

Gaussian noise

Pixel model

based on

U-Net

(2.57 million

parameters)

Simulated data:

- Proton images, energy and impact point (CT5 mono simulations)
- Images contain 1764 pixels
- Training data ~ 350,000 samples
- Analysis of images using test data set with \sim 80000 samples

Framework:

Energy E

Size s

Impact coordinate x

Impact coordinate y

Gaussian noise

Size model

based on

ResNet

(1.45 million

parameters)

- Score-based diffusion model based on CaloScore (arxiv:2308.03847)
- Size model: ResNet predicting size and impact coordinates from energy
- Pixel model: U-Net predicting image from energy, size, and impact coordinates

Generation of IACT proton images

06 November 2024

8

Work in

progress

FRIANGEN CENTRE PHYSICS

Investigation of pixel parameters

 Investigation of low-level image parameters

- Distributions of simulated and generated data sets match well
- Slightly more
 pixels occupied in
 generated images

Event analysis using Hillas parameters

- Hillas parameters introduced for IACT image analysis
- Elliptical parameterisation of the Cherenkov light distribution on the camera
- Used for particle identification and event reconstruction
- \rightarrow Utilized for quantifying shape of generated shower images

- Size: integrated signal
- Length L: spread along major axis
- Width W: spread along minor axis

Elliptical signal

- **Polar coordinate** *r* **of** ellipsis center
- Radial coordinate Φ of ellipsis center
- Rotation angle Ψ of ellipsis

Analysed Hillas parameters

→ Already good match of distributions, but improvements are still needed for most parameters

christian.elflein@fau.de

Correlation of Hillas parameters

- Investigation of ٠ encoded physics
 - Study correlations \rightarrow of Hillas parameters
- Minor differences ٠ but overall similar
- Diffusion model \rightarrow able to pick up complex parameter correlations

Generated

Summary and Outlook

• Simulation of IACT events, especially cosmic rays, computationally expensive

 \rightarrow Promising prospects for accelerating simulations in astroparticle physics with generative models

- Investigate fast, accurate, and memory-efficient approach for event generation
- Training of a score-based diffusion model (H.E.S.S. CT5 FlashCam)
- Successful generation of realistic images (more than 1500 pixels)
- Analysis of Hillas parameters and their correlations
 - Reproduction of distributions despite minor differences
- Speed-up of generation process still work in progress

Backup

Additional information

- **cWGAN-GP:** Critic, generator, energy constrainer and impact constrainer
- Score-based diffusion model: size model and pixel model

	Training time	Number of A100 GPUs for training	Generation time (100k images)
MC simulation	-	-	~ 70 h (1 CPU)
WGAN	~19 h	4	~ 2 s (1 GPU)
Diffusion model	~18 h	8	~ 33.5 h (1 GPU)

→ Outlook: improving of speed and accuracy of DM and accuracy of WGAN

