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Intro to SSL strategies

As opposed to supervised learning, which is limited by the
availability of labeled data, self-supervised approaches can learn
from vast unlabeled data (2304.12210)

To learn useful features from the data itself without using labels
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Necessity of SSL in LHC Physics

e Simulations don't model the data perfectly: need a way to directly train on data

e |t will be even harder and more computationally expensive to produce high-quality
simulations for High Luminosity LHC (1803.04165)
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First Goal of the Project

 To show that we can leverage SSL to learn powerful, generic, and transferable
features directly from vast unlabeled data.
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Toward Foundation Model

CMS Experiment at the LHC, CERN k
Data recorded: 2016-Aug-13 16:51:13.749568 GMT TaS S
Run / Event / LS: 278803 / 465417690 / 259
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Towards Foundation Model in HEP

Masked Particle
Type Prediction

Contrastive Learning:
Symmetry Augmentation
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Credit: This slide is copied from Michael Kagan’s talk in the FM Mini Workshop in October 2024
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Towards Foundation Model in HEP
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Primary Goal of the Project

 Focus on studying the effect of scaling up the sizes of pretraining datasets on the

performance of foundation model.

Fine-tune on
labeled simulation
dataset 1

Fine-tune on
labeled simulation
dataset 2
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Outline

Toward Foundation Model in HEP

Goals of the Project

Intro to JetCLR

Transfer Learning: from JetClass to Top Tagging

Scaling up pretraining dataset size

Some technical details

o Classification head for finetuning: MLP vs Linear Projection
 Techniques to speed up training

Ongoing and Future work



Augmentations
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https://arxiv.org/abs/2108.04253

Model Architecture for encoder

e Started with a simple Transformer encoder

 Working on switching to more advanced architectures such as Particle Transformer
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Datasets

JetClass for unlabeled pretraining, Top Tagging for labeled finetuning

Dataset name Size Description Role in transfer learning
JetClass . Contains 10 Stand in for unlabeled “data”,
100 Million Jets . .
Dataset classes of jets use for pretraining
Top Tagging - Only Top and Stand in for labeled
1.2 Million Jets . . L . .
Dataset QCD jets simulation”, use for fine-tuning
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Metrics

Accuracy: correctly predicted / total number of samples

Rejection: inverse of background rejection (FPR) at 50% signal efficiency (TPR)
ROC Curve
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Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model requires significantly fewer samples to
achieve high accuracy and rejection rate: higher data efficiency

* The averages and standard deviations over 5 trainings are shown in solid lines and
uncertainty bands, respectively
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Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model converges much faster: higher computational efficiency

* The averages and standard deviations over 5 trainings are shown in solid lines and
uncertainty bands, respectively

Model Training Comparison

N epochs it takes to reach within ~1% of final accuracy
500 -

—e— Pre-trained

—&— From scratch
400 -

300 -

N epochs

104 10° 10°
N labeled training samples
Pretrained: pretrained with 1M jets 15



tion

Rejec

Scaling up pretraining dataset size

By scaling up the pretraining dataset, the model demonstrated enhanced performance and

faster convergence: both data and computational efficiency improve as we use larger
datasets for pretraining

Background rejection at 50% signal efficiency Number of epochs required to reach within 1% of the
final accuracy
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Rejection: inverse of background rejection at 50% signal
efficiency
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Classification head for finetuning: MLP vs Linear Projection

Using an MLP with activation helps converge faster, but no significant
improvement in performance
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Techniques to speed up training

Steps we took to ensure the model finished pretraining within a
reasonable amount of time

e Removed unnecessary CPU-GPU synchronizations, especially read-out from GPU
for recording losses

e Modified the default model dimensions to be multiples of 8 to make use of CUDA
matrix multiplication kernels more efficiently

 Fused point-wise operations into a single CUDA kernel when computing the
contrastive loss.

e Utilized the Automatic Mixed Precision (AMP) package

e Measures to mitigate the numerical instability caused by using AMP in backup.



Conclusion

 Through large-scale pretraining followed by finetuning, our SSL approach has
demonstrated

* Enhanced data efficiency—requiring fewer labeled training samples to achieve
superior performance compared to the fully supervised approach.

 Greater computational efficiency—enabling the model to converge significantly
faster than its fully supervised counterpart.

e Both efficiencies increase as the pretraining dataset size increases.

 This paves the way for the use of unlabeled data in HEP and contributes to a better
understanding of the potential of SSL for scientific discovery.
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Ongoing and Future work

e Ongoing work

e Study the effectiveness of more advanced architectures like the Particle Transformer as the backbone
encoder

e Pretrain on JetClass v2, an even larger dataset
e Evaluate on different SSL strategies beyond JetCLR
e EXxplore other physically motivated augmentations

e Pairing the two jets from dijet events

e Using two subjets clustered with smaller radii

e Using tracks and clusters as two views of the same jet

20
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LHC and Jet Tagging

Proton_bea ms
5 Higgs boson?

Outgoing particles:

Top quark?

W or Z boson?

Collision point .................................................. Gluon?

Jet tagging

Collision event Bottom quark?

24 1709.04464



Measures to mitigate the numerical instability
caused by using AMP

 Monitor loss and gradient values regularly with tensorboard
e Gradient clipping with a maximum norm of 0.1
e Set the € parameter to 10%(—4) in the Adam optimizer.

 Manually run certain parts of the code in full precision



Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model shows a much clearer separation between signal and background
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Top Tagging

Pretraining on JetClass and fine-tuning on

The pre-trained model shows a much clearer separation between signa

and background
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Pretraining on JetClass and fine-tuning on Top Tagging

Despite limited data, the pre-trained model achieves higher accuracy

and converges faster

Model accuracy comparison
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A linear layer was added to the
encoder for fine-tuning.

Blue curve was pre-trained on
1% of the JetClass dataset (1
Million jets) with SImCLR

Red curve was trained from
scratch

Both models share the same
hyperparameters

Both models are trained with
100K jets (1/12 of the Top
Tagging Dataset)



Accuracies of two trials trained with 1000 labeled samples
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The CMS detector coordinate system

\ center of
N % the LHC
e ATLAS

https://tikz.net/axis3d_cms/
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Details of the Top Tagging Dataset

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26]| with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momen-
tum smearing changes with 7. The fat jet is then defined through the anti-kr algorithm |27
in FastJet 28] with R = 0.8. We only consider the leading jet in each event and require

pr; =550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within AR = 0.8,
and all top decay partons to be within AR = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |n;| < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

1902.09914



Details of the JetClass Dataset

Simulation setup. Jets in this dataset are simulated with
standard Monte Carlo event generators used by LHC ex-
periments. The production and decay of the top quarks
and the W, Z and Higgs bosons are generated with MAD-
GRAPHS_aMC@NLO (Alwall et al., 2014). We use PYTHIA
(Sjostrand et al., 2015) to evolve the produced particles, 1.e.,
performing parton showering and hadronization, and pro-
duce the final outgoing particles'. To be close to realistic
jets reconstructed at the ATLAS or CMS experiment, detec-
tor effects are stmulated with DELPHES (de Favereau et al.,
2014) using the CMS detector configuration provided in
DELPHES. In addition, the impact parameters of electrically
charged particles are smeared to match the resolution of the
CMS tracking detector (CMS Collaboration, 2014). Jets
are clustered from DELPHES E-Flow objects with the anti-
kt algorithm (Cacciari et al., 2008; 2012) using a distance
parameter i = 0.8. Only jets with transverse momentum
in 500-1000 GeV and pseudorapidity |n| < 2 are consid-
ered. For signal jets, only the “high-quality’ ones that fully
contain the decay products of initial particles are included?.

2202.03772



Training on Top Tagging

Are the features correlated?

Distribution of Pearson Correlation Coefficients for Top features Distribution of Pearson Correlation Coefficients for QCD features
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